Implementation of a near real-time phylogenetic monitoring program for HIV transmission outbreaks

Art FY Poon1,2, Conan K Woods1, Susan Shurgold1, Guillaume Colley1, Robert S Hogg1,3, Mel Krajden4, Mark Gilbert4,5, Reka Gustafson6, Julio SG Montaner1,2, and P Richard Harrigan1,2

1BC Centre for Excellence in HIV/AIDS Vancouver, Canada; 2Department of Medicine, University of British Columbia; 3Faculty of Health Sciences, Simon Fraser University; 4BC Centre for Disease Control; 5Ontario HIV Treatment Network; 6Vancouver Coastal Health
Phylogenetic clustering

- A popular method for characterizing the transmission history of an epidemic.
- HIV evolution and transmission unfold on similar time scales.
- Clusters of genetically similar infections can represent localized outbreaks of HIV transmission.
HIV treatment in BC, Canada

- BC Centre for Excellence in HIV/AIDS is responsible for all routine HIV drug resistance genotyping in the province.

- HIV genotyping is automatically performed on all new patients’ baseline samples submitted for viral load testing.

- Data are already available from ~75% of the 11,000 people ever enrolled in Drug Treatment Program (DTP)*.

- All de-identified sequences deposited in DTP database with anonymous clinical, demographic, and risk factor data.

*Estimated HIV prevalence in BC: ~15,000 persons
HIV treatment in BC, Canada

- BC Centre for Excellence in HIV/AIDS is responsible for all routine HIV drug resistance genotyping in the province.

- HIV genotyping is automatically performed on all new patients’ baseline samples submitted for viral load testing.

- Data are already available from \(\sim 75\% \) of the 11,000 people ever enrolled in Drug Treatment Program (DTP)*.

- All de-identified sequences deposited in DTP database with anonymous clinical, demographic, and risk factor data.

*Estimated HIV prevalence in BC: \(\sim 15,000 \) persons
BC Centre monitoring system

- Automated system queries the drug resistance database hourly.

- If new records exist, it performs a phylogenetic analysis of entire database and maps clusters.

- Determines if new cases appear within clusters, defined at a minimum size of 5 individuals.

- Monthly and quarterly reports† on cluster growth and characteristics issued to Centre directors, BC Centre for Disease Control, BC Ministry of Health.

†Daily reports to lab director.
An ‘actionable’ cluster

- Detected growth of a cluster by 9 new cases in 3 months.
- All but one carried transmitted HIV drug resistance‡ (TDR).
- Prompted a formal outbreak investigation, currently ongoing.
- Majority of viral loads have since changed from high to undetectable.

‡K103N, NNRTI resistance
Concluding remarks

▶ Difficult to obtain timely information on recent changes in an epidemic.

▶ Real-time monitoring of population-wide resistance data can inform targeted HIV prevention efforts.

▶ Preserving treatment options by detecting and averting transmission of HIV drug resistance.

▶ Knowledge translation was driven by a recent local outbreak of transmitted drug resistance.
This work was supported by a CIHR operating grant awarded to Poon (HOP 111406), by NIH NIDA grants 1-R01-DA036307-01 (Montaner) R01-DA021525-06 (Wood) and R01-DA011591 (Kerr), and a grant from Genome Canada for Genomics and Personalized Health (Harrigan/Montaner).

I am supported by a Partner Scholar Award from the Michael Smith Foundation for Health Research / St. Paul's Hospital Foundation-Providence Health Care Research Institute; and a New Investigator Award from CIHR.

Ethical approval for this study was granted by the Providence Health Care / University of British Columbia Research Ethics Board (H07-02559).