#### **Cost-Effectiveness of PrEP**

Bruce R. Schackman, PhD Department of Public Health Weill Cornell Medical College

TasP and PrEP Evidence Summit 2012 London June 12, 2012

#### Disclosures

- Member of the HPTN 069 NEXT-PrEP (Novel Exploration of Therapeutics for PrEP) clinical trial team
- No financial disclosures

#### Agenda

- Cost-effectiveness overview
- PrEP cost-effectiveness model considerations
- Cost-effectiveness of PrEP in United States and South Africa: current findings
- Issues and future research needs

#### Cost-effective ≠ Cost saving

#### Cost-effectiveness is about value for money

- Cost-effectiveness analysis is about comparative assessment of worth
- Very, very few health interventions are costsaving
- Cost-effectiveness is evaluated from the societal perspective
- Cost-effectiveness analysis does not directly address the cost impact on specific budgets

Only one of many measures of the appropriateness of health interventions

- Clinical duty
- Ethical duty
- Equity / justice
- Patient preference
- Economic efficiency

#### Choosing a cost-effectiveness threshold

- \$100,000/QALY now frequently used in the US
- 1-3x GDP/capita frequently used in middle and low-income countries
  - \$8,100/DALY-\$24,300/DALY for South Africa
  - Although benchmark is \$/DALY, also has been applied to \$/LY

#### Discounting: valuing appropriately over time

- We prefer receiving benefits (money, health) now versus later
- Discounting reduces future streams of costs and effects to a common present value
- Spending on prevention now may not bear fruit for many years
- Treatments that save lives now can result in additional costs in the future
- Impact depends on when costs and benefits occur and the time horizon of the study

# All models are wrong, some models are useful

#### **Individual-level Model**



## Individual-level model inputs

- Target population demographics
- HIV incidence (varies by age/risk group)
- Effectiveness of PrEP (efficacy, adherence)
- Disinhibition (reduces effectiveness of PrEP)
- Duration of PrEP (e.g. lifetime, 20-30 years)
- Risk of resistance
- HIV testing frequency with and without PrEP
- ART initiation with and without PrEP

#### Transmission model inputs

- Initial HIV prevalence
- Initial ART coverage and changes over time
- Initial coverage of other prevention programs (condom use) and changes over time
- Timing of PrEP roll-out into the population



Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness

Kamal Desai<sup>a</sup>, Stephanie L. Sansom<sup>b</sup>, Marta L. Ackers<sup>b</sup>, Scott R. Stewart<sup>c</sup>, H. Irene Hall<sup>b</sup>, Dale J. Hu<sup>b</sup>, Rachel Sanders<sup>d</sup>, Carol R. Scotton<sup>b</sup>, Sada Soorapanth<sup>b</sup>, Marie-Claude Boily<sup>a</sup>, Geoffrey P. Garnett<sup>a</sup> and Peter D. McElroy<sup>b</sup>

AIDS 2008, 22:1829-1839





HIV Preexposure Prophylaxis in the United States: Impact on Lifetime Infection Risk, Clinical Outcomes, and Cost-Effectiveness

Clinical

Infectious

Diseases

A. David Paltiel,<sup>1</sup> Kenneth A. Freedberg,<sup>23,45,7,8,9</sup> Callie A. Scott,<sup>3</sup> Bruce R. Schackman,<sup>12</sup> Elena Losina,<sup>8,8,10</sup> Bingxia Wang,<sup>3</sup> George R. Seage III,<sup>6</sup> Caroline E. Sloan,<sup>3</sup> Paul E. Sax,<sup>45,11</sup> and Rochelle P. Walensky<sup>23,45,11</sup>

Clinical Infectious Diseases 2009; 48:806-15

The Cost-Effectiveness of Preexposure Prophylaxis for HIV Prevention in the United States in Men Who Have Sex With Men

> er legener freidelte aus Arisonieleg, Arinoan fen en legene Organis ansag Distata aus Aristolaus

Jessie L. Juusola, MS; Margaret L. Brandeau, PhD; Douglas K. Owens, MD, MS; and Eran Bendavid, MD, MS

Ann Intern Med. 2012;156:541-550.

## Study model characteristics

|                         | Desai (2008)                   | Paltiel (2009)                                          | Juusola (2012)                                                          |
|-------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|
| Туре                    | Transmission                   | Individual-level                                        | Transmission                                                            |
| Time horizon            | 5 years                        | lifetime                                                | 20 years                                                                |
| PrEP                    | tenofovir/<br>emtricitabine    | tenofovir/<br>emtricitabine                             | tenofovir/<br>emtricitabine                                             |
| No PrEP                 | unclear                        | Annual HIV testing<br>and ART initiation at<br>CD4 <350 | 67% annual<br>testing and ART<br>initiation at<br>CD4<350 or<br>CD4<500 |
| Base case HIV incidence | 0.75%-1.85%<br>(varies by age) | 1.6%                                                    | 0.8%,<br>2.3% high risk                                                 |

## Study model inputs for PrEP

|                         | Desai (2008)            | Paltiel (2009)                               | Juusola (2012)                            |
|-------------------------|-------------------------|----------------------------------------------|-------------------------------------------|
| Effectiveness           | 50%                     | 50%                                          | 44%                                       |
| Monthly medication cost | \$943                   | \$724                                        | \$776                                     |
| Full use of meds?       | Yes                     | Yes                                          | Yes                                       |
| Monitoring              | quarterly               | lab quarterly, MD<br>semi-annually           | every 2-3<br>months                       |
| Labs                    | "medical<br>monitoring" | HIV, CBC,<br>metabolic,<br>chemistry, lipids | HIV, STI,<br>creatinine, urea<br>nitrogen |
| Resistance evaluated?   | No                      | Yes                                          | Yes                                       |

### Cost-effectiveness of PrEP in US MSM: study findings

- Cost-effectiveness ratio is more attractive when PrEP is targeted to high-risk MSM:
  - <\$100,000/QALY with high incidence (2-3%) vs. >\$200,000/QALY with lower incidence (0.8%)
  - Mixed results for intermediate incidence (1-2%)
  - Ways to target: younger age, 5+ annual partners, not being tested for HIV annually
- Cost-effectiveness improves dramatically when effectiveness improves or cost of PrEP is lower
- Results less sensitive to resistance, toxicity

#### Cost of PrEP in US MSM

- High-risk MSM, average annual cost for a 20year program (based on Juusola, 2012)
  - 100% coverage: \$4,250 million cost, \$500 million health care savings, \$3,750 million net cost
  - 20% coverage: \$850 million cost, \$150 million health care savings, \$700 million net cost



#### The Cost-effectiveness of Pre-Exposure Prophylaxis for HIV Infection in South African Women

Rochelle P. Walensky,<sup>1,2,3,5</sup> Ji-Eun Park,<sup>2</sup> Robin Wood,<sup>6,7</sup> Kenneth A. Freedberg,<sup>1,2,5,8,11</sup> Callie A. Scott,<sup>2</sup> Linda-Gail Bekker,<sup>6,7</sup> Elena Losina,<sup>4,5,12</sup> Kenneth H. Mayer,<sup>13,14,15</sup> George R. Seage III,<sup>9,10</sup> and A. David Paltiel<sup>16</sup>

Clinical Infectious Diseases 2012;54(10):1504-13





OPEN OACCESS Freely available online

PLos one

#### Evaluating the Cost-Effectiveness of Pre-Exposure Prophylaxis (PrEP) and Its Impact on HIV-1 Transmission in South Africa

Carel Pretorius<sup>1</sup>\*, John Stover<sup>1</sup>, Lori Bollinger<sup>1</sup>, Nicolas Bacaër<sup>2</sup>, Brian Williams<sup>3</sup>

November 2010 | Volume 5 | Issue 11 | e13646

Cost-effectiveness of PrEP in young South African women

- Walensky (2012) modeled individual-level impact of 39% efficacy vaginal gel based on CAPRISA results, annual PrEP cost \$188, lifetime perspective
- Cost-effectiveness is <1 x South Africa GDP at 2.2% annual incidence age 25 and younger
- May be cost saving if targeted to higher risk women <u>and</u> higher efficacy or lower cost
- Results less sensitive to resistance, toxicity

#### Cumulative cost in young South African women (US\$ per 1,000 women enrolled)



## Impact of ART expansion in South Africa on cost-effectiveness of PrEP in young women

- Pretorius (2010) extended a previous model of transmission impact of expanded ART coverage in South Africa to examine PrEP
- Results point to interaction between PrEP and ART coverage
  - At current ART coverage, synergies occur with PrEP
  - PrEP becomes less cost-effective with expanded ART coverage, but impact occurs only when coverage is 3x level in 2010
  - PrEP retains impact longer when targeted to higher risk women

#### Issues identified across studies

- Implementation impact on efficacy and cost
  - Adherence: medication adherence and wastage, monitoring adherence, duration of PrEP
  - Coverage of target group vs. those at low risk
- Interaction between PrEP and TasP
  - Individual-level: testing and entry into care
  - Transmission: impact of TasP on probability of transmission without PrEP

## **Priorities for future studies**

- Evaluating new PrEP modalities, integrating cost-effectiveness studies into clinical trials
- Evaluating "real world" implementation
  Uptake in high risk groups
  - Adherence and duration on PrEP
  - Access barriers and insurance coverage
  - Budget impact
- Modeling cost-effectiveness of combination interventions, including PrEP and TasP

#### Acknowledgements

- Ashley Eggman, MS, Weill Cornell
- Roy M. Gulick, MD, MPH, Weill Cornell
- A. David Palitiel, PhD, Yale
- Rochelle Walensky, MD, MPH, Harvard