

Engaging and Re-Engaging in HIV Care: Strategies for Success

Thomas P. Giordano, MD, MPH Baylor College of Medicine Houston, Texas USA

Continuum 2024 · June 9-11, 2024 · Puerto Rico

Find and Re-engage Out of Care PWH

Find

- Routine HIV screening, Data to Care (D2C), hospitalized, incarcerated
- (Homeless service providers, facilities serving people who misuse substances, mental health facilities, LGBTQ-serving facilities, facilities for sex workers)

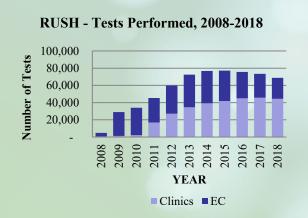
Intervene

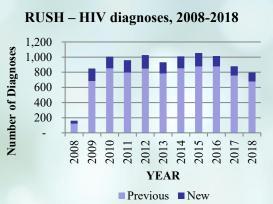
- Rapid start, financial, navigation, mentoring, psychosocial, multilevel, differentiated care
- Not a comprehensive review but hopefully useful observations
- Themes: no single intervention; multi-component interventions; context and details drive results; many research opportunities Thomas P. Giordano

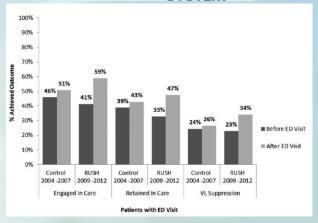
(Re)-engage in HIV Care: The Problem

- Find undiagnosed PWH:
 - ~ 15% worldwide and in US are undiagnosed
- Find out of care PWH:
 - ~ 10% of diagnosed worldwide not on ART (wide variation by country)
 - ~ 25% of diagnosed in US not in care
- (Re)-engage PWH in care to achieve viral suppression:
 - ~ 7% of people on ART worldwide are not suppressed
 - ~ 14% of in-care in US are not suppressed
- The young, minoritized, stigmatized, poor and otherwise marginalized are over-represented in these groups

Baylor College of Medicine Medicine Medicine Research


(Re)-engage Out of Care PWH:


Routine HIV Testing



HARRISHEALTH SYSTEM

Routine Universal Screening for HIV: Project RUSH

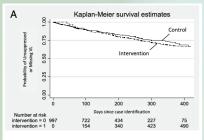
Routine, lab-based testing, not rapid tests, opt-out testing among persons getting blood test orders

On-site HIV linkage workers handle positive test results, linkage for new and previous diagnoses

>1 million tests done; 9/1000 positive, 1.7/1000 new positive; higher in ER and homeless clinics

Improved engagement in care for previously diagnosed from 51% pre-RUSH to 59%

Thomas P. Giordano


Re-engage Out of Care PWH:

Data to Care

A Cluster Randomized Evaluation of a Health Department Data to Care Intervention Designed to Increase Engagement in HIV Care and Antiretroviral Use

Julia C. Dombrowski, MD, MPH,*†‡ James P. Hughes, PhD, \$\Susan E. Biuskin, PhD, MPH,†‡
Amy Bennett, MPH,†‡ David Katz, PhD, MPH,*† Mark Fleming, BA,†
Angela Nunez,† and Matthew R. Golden, MD, MPH*†‡

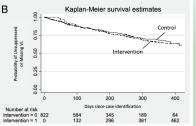
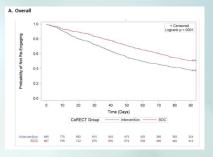


Figure 3. Kaplan-Meier curves for time to viral suppression according to intervention versus control period. A, All cases identified (ITT), n = 997 participants in 281 clusters. B, Excluding deaths and relocations (mITT), n = 822 participants in 252 clusters.


Dombrowski: out of care for 12 months, stepped wedge randomized study, D2Cto find and relink: negative.

Fanfair: in care in last 12m, but out of care for last 6m, individually randomized, hybrid (public health + clinic sharing data) D2C to find and relink: faster and more re-engagement; no impact on VS.

Research paper

The Cooperative Re-Engagement Controlled trial (CORECT): A randomised trial to assess a collaborative data to care model to improve HIV care continuum outcomes

Robyn Neblett Fanfair^{a,}, George Khalil^a, Tiffany Williams^{a,b}, Kathleen Brady^c, Alfred DeMaria^d, Merceditas Villanueva^c, Liisa M. Randall^d, Heidi Jenkins^f, Frederick L. Altice^e, Nasima Camp^{a,b}, Crystal Lucas^c, Marianne Buchelli^f, Taraz Samandari^a, Paul J. Weidle^a

Baylor College of


DISEASES

Fanfair et al., Lancet Regional Health - Americas 3 (2021) 100057

D2C: Likely utility, dependent on data, cycle time for processing, timing, outreach. But still linking to the same system that failed the patient the first time (Matt Golden)

Thomas P. Giordano

Hospitalized PWH

Original Investigation

Effect of Patient Navigation With or Without Financial Incentives on Viral Suppression Among Hospitalized Patients With HIV Infection and Substance Use

A Randomized Clinical Trial

Lisa R. Metsch, PhD; Daniel J. Feaster, PhD; Lauren Gooden, PhD; Tim Matheson, PhD; Maxine Stitzer, PhD; Moupali Das, MD; Mamta K. Jain, MD; Allan E. Rodriguez, MD; Wendy S. Armstrong, MD; Gregory M. Lucas, MD, PhD; Ank E. Nijhawan, MD; Mari-Lynn Drainoni, PhD; Patricia Herrera, MD; Pamela Vergara-Rodriguez, MD; Jeffrey M. Jacobson, MD; Michael J. Mugavero, MD; Meg Sullivan, MD; Eric S. Daar, MD; Deborah K. McMahon, MD; David C. Ferris, MD; Robert Lindblad, MD; Paul VanVeldhuisen, PhD; Neal Oden, PhD; Pedro C. Castellón, MPH; Susan Tross, PhD; Louise F. Haynes, MSW; Antoine Douailhy, MD; James L. Sorensen, PhD; David S. Metzger, PhD; Raul N. Mandler, MD; Grant N. Colfax, MD; Carlos del Rio, MD

	No./Total (%)						
	Navigation Only	Navigation + Incentives	Usual Treatment				
Primary Outcome at 12 Months ^b							
Treatment success	89/249 (35.7)	98/254 (38.6)	85/249 (34.1)				
Viral suppression (success) ^c	89/217 (41.0)	98/225 (43.6)	85/220 (38.6)				
Death (failure) ^d	32/249 (12.9)	29/254 (11.4)	29/249 (11.7)				
Secondary Outcomes at 6 Months ^j							
Treatment success	97/248 (39.1)	120/260 (46.2)	89/253 (35.2)				
Viral suppression (success) ^c	97/225 (43.1)	120/238 (50.4)	89/233 (38.2)				
Deaths (failure) ^d	23/248 (9.3)	22/260 (8.5)	20/253 (7.9)				

Metsch: out of care population, hospitalized, peer navigation plus incentives x 6 m (max \$1160): impact at end of intervention but by 12 m: negative (Metsch et al., JAMA 2016;316(2): 156-170)

Giordano: out of care population, hospitalized, peer mentoring in hospital: negative (Giordano et al., Clin

Infect Dis 2016 Sep 1;63(5):678-686)

Thomas P. Giordano

Raylor

Baylor

Baylor

0.18 (0.02 to 0.40)

0.22 (0.03 to 0.41)

24

Re-engage Out of Care PWH: PWH in Jail and Prison

12 Months (n = 250)

Change at 12 months (95% CI)c,e

JAMA Internal Medicine | Original Investigation

Effectiveness of a Peer Navigation Intervention to Sustain Viral Suppression Among HIV-Positive Men and Transgender Women Released From Jail The LINK LA Randomized Clinical Trial

William E. Cunningham, MD, MPH; Robert E. Weiss, PhD; Terry Nakazono, MS; Mark A. Malek, MD; Steve J. Shoptaw, PhD; Susan L. Ettner, PhD; Nina T. Harawa, PhD

Cunningham: in jail, 12 pre-release sessions, with contact post-release: kept VL and RIC from declining post release (Cunningham JAMA Inten Med 2018;178(4):542-553)

Wohl: Negative study of pre-/post-release intervention (MI, SMS, active linkage) from prison (Wohl et al., imPACT intervention, JAIDS 2017;75(1);81-90)

Table 2. Effect of the LINK LA Intervention on Viral Suppression ^a After Jail Release									
	No./No. (Probability ^b)		_						
Measurement Time	Intervention	Control	Probability Difference (95% CI) ^c	P Value ^d					
Baseline (n = 356)	88/180 (0.49)	91/176 (0.52)	-0.04 (-0.18 to 0.10)	.60					
3 Months (n = 315)	82/157 (0.53)	63/158 (0.37)	0.16 (0.01 to 0.31)	.03					
Change at 3 months (95% CI)c,e	0.04 (-0.08 to 0.17)	-0.16 (-0.28 to -0.03) ^f	0.20 (0.02 to 0.38)	.02					

0.003 (-0.130 to 0.140) -0.22 (-0.35 to -0.09)9

45/125 (0.30)

62/125 (0.49)

Measurement Time	Intervention (95% CI) (n = 180)	Control (95% CI) (n = 176)	Difference (95% CI) ^{b,c}	P Value ^d
Retention in HIV Care ^f				
Baseline (n = 350)	1.64 (1.29 to 2.00)	2.26 (1.74 to 2.77)	-0.61 (-1.24 to 0.01) ^g	.054
3 Months (n = 312)	3.08 (2.56 to 3.61)	3.04 (2.52 to 3.55)	0.04 (-0.69 to 0.77)	.90
Change at 3 months (n = 307) ^{a,c}	1.44 (0.89 to 1.98)h	0.78 (0.18 to 1.38) ^g	0.66 (-0.15 to 1.47)	.11
6 Months (n = 261)	2.15 (1.79 to 2.50)	2.15 (1.75 to 2.55)	-0.001 (-0.54 to 0.53)	>.99
Change at 6 months (n = 256) ^{a,c}	0.50 (0.10 to 0.90) ^g	-0.11 (-0.66 to 0.44)	0.61 (-0.07 to 1.30)	.08
12 Months (n = 235)	2.25 (1.87 to 2.64)	2.16 (1.79 to 2.53)	0.09 (-0.44 to 0.62)	.73
Change at 12 months (n = 232)a,c	0.61 (0.17 to 1.06) ⁹	-0.10 (-0.63 to 0.44)	0.71 (0.01 to 1.40) ⁹	.047

Thomas P. Giordano

.03

.02

Summary of findings for the main comparison. Rapid antiretroviral therapy (ART) compared to standard care for people living with HIV

Rapid ART compared to standard care for people living with HIV

Patient or population: people living with HIV

Setting: any

Intervention: rapid ART Comparison: standard care

Outcomes	Anticipated a	bsolute effects* (95%	Relative effect (95% CI)	Number of partici- pants	Certainty of the evidence (GRADE)	Comments	
	Risk with standard care	Risk with rapid ART		(studies)	(GIADL)		
Mortality at 12 months	44 per 1000	32 per 1000 (22 to 44)	RR 0.72 (0.51 to 1.01)	5451 (7 RCTs)	⊕⊙⊙ Very low ^{a,b,c}	We do not know if rapid ART has an effect on mortality after one year of follow-up.	
Virological sup- pression at 12 months	506 per 1000	597 per 1000 (556 to 642)	RR 1.18 (1.10 to 1.27)	2719 (4 RCTs) ^d	⊕⊕⊕⊙ Moderate ^e ,f,g,h	Rapid ART probably increases the likelihood of individuals being virally suppressed after 12 months.	
Retention in care at 12 months	538 per 1000	656 per 1000 (597 to 726)	RR 1.22 (1.11 to 1.35)	5001 (6 RCTs)	⊕⊕⊙⊝ Lowg,h,i,j	Rapid ART may improve retention in care at 12 months.	
Uptake of ART at 90 days	719 per 1000	942 per 1000 (848 to 1000)	RR 1.31 (1.18 to 1.45)	11,404 (4 RCTs)	⊕⊕⊙⊙ Lowh,k,l	Rapid ART may improve uptake of ART at 90 days.	
Uptake of ART at 12 months	870 per 1000	948 per 1000 (922 to 975)	RR 1.09 (1.06 to 1.12)	3713 (4 RCTs)	⊕⊕⊕⊙ Moderate ^{h,k}	Rapid ART probably improves uptake of ART at 12 months.	
Treatment modifi- cation	2 per 1000	23 per 1000 (4 to 119)	RR 7.89 (0.76 to 81.74)	977 (2 RCTs)	⊕⊙⊝⊝ Very low ^{m,n}	We do not know the effect of rapid ART on treatment modification.	

[&]quot;The risk in the intervention group (and its 95% CI) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). Abbreviations: ART: antiretroviral therapy; CI: confidence interval; RR: risk ratio.

Engage PWH: Rapid Start

Cochrane metaanalysis (no US RCTs)

Thomas P. Giordano

Mateo-Urdiales A, Johnson S, Smith R, Nachega JB, Eshun-Wilson I. Rapid initiation of antiretroviral therapy for people living with HIV. Cochrane Database of Systematic Reviews 2019, Issue 6. Art. No.: CD012962. DOI: 10.1002/14651858.CD012962.pub2.

(Re)-engage Out of Care PWH: #CONTINUUM2024

Financial Incentives

Effectiveness of Financial Incentives in Achieving UNAID Fast-Track 90-90-90 and 95-95-95 Target of HIV Care Continuum: A Systematic **Review and Meta-Analysis of Randomized Controlled Trials**

Yuvaraj Krishnamoorthy¹ · Tanveer Rehman¹ · Manikandanesan Sakthivel²

	Financial inc	Financial incentives Us				Risk Ratio	Risk Ratio			
Study or Subgroup	Events	Events Total		Events Total		IV, Random, 95% CI	IV, Random, 95% CI			
Choko 2018	266	512	56	408	19.8%	3.79 [2.93, 4.90]		-		
Kranzer 2018	316	654	93	472	20.0%	2.45 [2.01, 2.99]		-		
Montoy 2018	790	1187	2476	4800	20.2%	1.29 [1.23, 1.35]		•		
Saxena 2016	61	104	46	98	19.8%	1.25 [0.96, 1.63]		 • 		
Sibanda 2017	7852	14099	1062	10580	20.2%	5.55 [5.23, 5.88]		1.		
Total (95% CI)		16556		16358	100.0%	2.42 [1.06, 5.54]				
Total events	9285		3733							
Heterogeneity: Tau*:	= 0.88; Chi2 = 1-	432.68, df	= 4 (P x	0.00001	; P= 100	% -	01 02	0.5 1 2 5 10		
Test for overall effect								U.5 1 2 5 10 al Care] Favours [Incentives]		

(a) Forest plot showing the effectiveness of financial incentives in improving the uptake of HIV testing (N=5)

(b) Forest plot showing the effectiveness of financial incentives in improving the linkage to ART care (N=4)

		Financial ince	ntives	Usual	care		Risk Ratio	RISK RATIO
	Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
	Brown 2018	29	46	29	40	20.4%	0.87 [0.65, 1.16]	
	Elul B 2017	467	493	482	767	28.7%	1.51 [1.42, 1.60]	•
	McNairy 2017	1032	1096	957	1101	29.0%	1.08 [1.05, 1.11]	•
Links of the ADT	Solomon 2014	49	60	33	60	21.9%	1.48 [1.15, 1.92]	
Linkage to ART	Total (95% CI)		1695		1968	100.0%	1.22 [0.96, 1.55]	•
	Total events	1577		1501				16 51 1955 196
	Heterogeneity: Tau ² : Test for overall effect			3 (P < 0	00001)	, F= 97%		0.5 0.7 1.5 2 Favours [Usual care] Favours [Incentive]

(c) Forest plot showing the effectiveness of financial incentives in improving the ART initiation (N=3)

	Financial ince	Financial incentives Usual				Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Brown 2018	18	46	18	40	18.7%	0.87 [0.53, 1.43]	-
McNairy 2017	710	1096	635	1101	63.1%	1.12 [1.05, 1.20]	-
Solomon 2014	27	60	16	60	18.3%	1.69 [1.02, 2.79]	•
Total (95% CI)		1202		1201	100.0%	1.15 [0.90, 1.49]	
Total events	755		669				
Heterogeneity: Tau*:	= 0.03; Chi2 = 3.	52, df = 2	(P = 0.17)); P = 4	3%	_	0.5 0.7 1 1.5 2
Test for overall effect	Z = 1.10 (P = 0)	.27)					Eavours It Isual carel Favours Incentives

ART initiation

AIDS and Behavior (2021) 25:814-825 https://doi.org/10.1007/s10461-020-03038-2

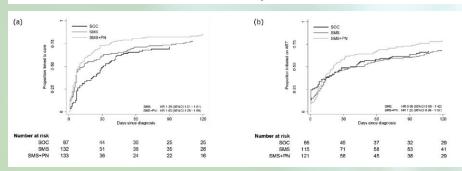
Forest plot showing the effectiveness of financial incentives in improving the viral suppression (N=10)

Financial i		entives	Usual	care		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Events Total		Events Total		IV, Random, 95% CI	IV, Random, 95% CI
Alsan 2017	8	19	24	70	1.9%	1.23 [0.66, 2.28]	
Javanbakht 2006	26	47	12	43	2.4%	1.98 [1.15, 3.42]	
McNairy 2017	419	477	406	451	23.5%	0.98 [0.93, 1.02]	*
Metsch 2016	120	238	89	233	10.7%	1.32 [1.07, 1.62]	
Rosen 2007	13	22	10	21	2.3%	1.24 [0.70, 2.19]	· · · · · · · · · · · · · · · · · · ·
Solomon 2014	16	60	21	60	2.4%	0.76 [0.44, 1.31]	
Stitzer 2018	125	271	104	266	11.2%	1.18 [0.97, 1.44]	
Thirumurthy 2019	168	200	156	190	19.9%	1.02 [0.94, 1.12]	-
Weiser 2015	57	72	46	68	10.9%	1.17 [0.96, 1.43]	 • • • • • • • • • • • • • • • • • • •
Yotebeing 2016	113	171	108	155	14.7%	0.95 [0.82, 1.10]	·
Total (95% CI)		1577		1557	100.0%	1.08 [0.99, 1.18]	•
Total events	1065		976				100
Heterogeneity: Tau2:	= 0.01; ChF = 21	.65, df =	9 (P = 0.0)	1); I ² = :	58%	-	0.5 0.7 1 1.5 2
Test for overall effect	Z=1.65 (P=0	.10)					0.5 0.7 1 1.5 2 Favours [Usual care] Favours [Incentive]

Viral Suppression

HITS Study 2021: Conditional financial incentives for home testing and linkage in South Africa; increased HIV testing in men and women; and increased linkage within 6 weeks in WOMEN. Tanser et al. J Int AIDS Soc. 2021;24(2):e25665.

Financial Incentives: Funding source, logistics, kick-back concerns, durability of impact raise implementation and sustainability concerns


Engage PWH:

SMS and Peer Navigation

Impact of short message service and peer navigation on linkage to care and antiretroviral therapy initiation in South Africa

Sheri A. Lippman^a, Julia de Kadt^b, Mary J. Ratlhagana^b, Emily Agnew^a, Hailey Gilmore^a, Jeri Sumitani^b, Jessica Grignon^{b,c}, Sarah A. Gutin^a, Starley B. Shade^a, Jennifer M. Gilvydis^b, John Tumbo^d, Scott Barnhart^{c,e} and Wayne T. Steward^a

Lippman: newly diagnosed population, randomized, SMS (automated) and SMS (live) + peer navigation:

SMS and SMS+PN improved linkage; and SMS+PN improved ART initiation.

Appointment reminders help;

SMS with interactive "live" respondent more effective;

SMS paired with other interventions like PN likely more robust than SMS alone

Baylor College of Medicine Medicine DISEASES

#CONTINUUM2024

(Re)-engage PWH: Differentiated Care

- More focus on retention rather than re-engagement
- Data for home delivery, adherence clubs and extended refills
- Most studying reducing services for successfully treated in LMIC
- Few study intensifying services for the needy
 - MAX Clinic in Seattle
 - Ward 86 program for LA-ART in patients without VL suppression

Improving Engagement in Care

- Data from other studies support:
 - Neighborhood and home testing (in LMIC)
 - **Enhanced contact**
 - Clinic-wide marketing (e.g., posters, brochures, and customer service training of patient-facing staff) to promote attending scheduled visits
 - An optimal patient care experience, constructively affirming attendance rather than criticizing non-attendance, and collaboratively problem solving with patients to overcome barriers to care
 - Stepped case management and social and outreach services
 - Flexible appointment schedules, expanded clinic hours, and copay and other financial or insurance assistance to support uninterrupted access to care
 - See DHHS treatment guidelines for references

Engaging and Re-engaging in HIV Care Research Opportunities

- Identify and reach higher prevalence micro-communities with low access to services and intervene with interventions tailored to these populations
- Develop and test multi-faceted, tailored, adaptive interventions
- Integrate clinical services into non-clinical sites
- Address syndemics where the "syn" is likely more difficult to address than the HIV is
- Self-test for HIV and for VL failure
- Reduce/address stigma, bias, discrimination and inequity (Munoz-Laboy, SUNY Stony Brook, R01 testing delivering legal aid)
- Study and intervene on policy and funding
- Maximize technology (telemedicine, virtual communities, apps, AI)

Acknowledgements

#CONTINUUM2024

Patients

Institutions

Baylor College of Medicine Thomas Street Health Center Harris Health System Michael E. DeBakey VA Medical Center

Funding/Support

NIH HRSA CDC VA HSRD

City of Houston Health Department MD Anderson Research Chair at BCM

Colleagues

K. Rivet Amico

Jeff Cully

Bich Dang

Jessica Davila

Lilian Dindo

Charlene Flash

Jan Lindsay

Christine Markham

Nancy Miertschin

Ethan Moitra

Shital Patel

Maria Rodriguez

Coordinators,

Research Assistants,

and Data Analysts

Tanisha Bell

Denise Flores

Magan Fosso

Karla Gonzalez

Christine Hartman

Kendal Hertenberger

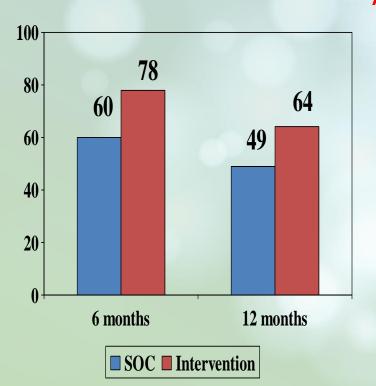
Sarah May

Martha Navarro

Elizabeth Soriano

Sallye Stapleton

Grace White



Engage PWH in US:

ARTAS

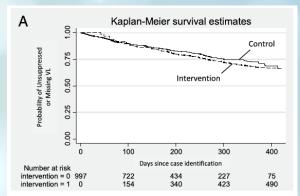
- 273 participants, 4 cities
- 78% diagnosed <6 m
- 90 d of strength-based case management compared to passive linkage

Replicated in ARTAS II

All service linkage workers, patient navigators, and disease intervention specialists (DIS) should be trained in ARTAS

Re-engage Out of Care PWH:

Data to Care


A Cluster Randomized Evaluation of a Health Department Data to Care Intervention Designed to Increase Engagement in HIV Care and Antiretroviral Use

Julia C. Dombrowski, MD, MPH,*†‡ James P. Hughes, PhD,§ Susan E. Buskin, PhD, MPH,†‡

Amy Bennett, MPH,†‡ David Katz, PhD, MPH,*† Mark Fleming, BA,†

Angela Nunez,† and Matthew R. Golden, MD, MPH*†‡

Dombrowski: out of care for 12 months, stepped wedge randomized study, data to care to find and relink: negative.

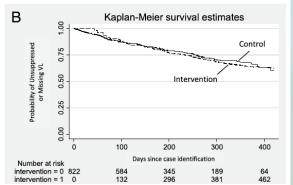
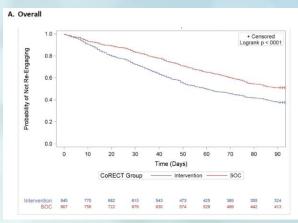
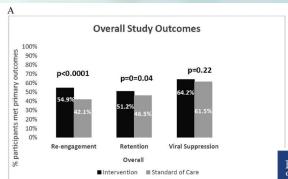


Figure 3. Kaplan-Meier curves for time to viral suppression according to intervention versus control period. A, All cases identified (ITT), n = 997 participants in 281 clusters. B, Excluding deaths and relocations (mITT), n = 822 participants in 252 clusters.

Re-engage Out of Care PWH:

Data to Care


Research paper


The Cooperative Re-Engagement Controlled trial (CoRECT): A randomised trial to assess a collaborative data to care model to improve HIV care continuum outcomes

Robyn Neblett Fanfair^{a,*}, George Khalil^a, Tiffany Williams^{a,b}, Kathleen Brady^c, Alfred DeMaria^d, Merceditas Villanueva^e, Liisa M, Randall^d, Heidi Jenkins^f, Frederick L. Altice^e, Nasima Camp^{a,b}, Crystal Lucas^c, Marianne Buchelli^f, Taraz Samandari^a, Paul J. Weidle^a

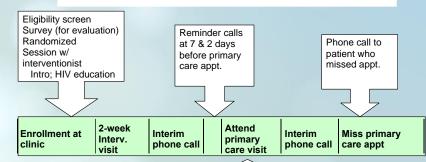
Fanfair: in care in last 12m, but out of care for last 6m, individually randomized, hybrid (public health + clinic sharing data) D2C to find and relink: faster and more reengagement; no impact on VS.

Thomas P. Giordano

Baylo

Improving Retention in Care:

#CONTINUUM2024


One successful RCT for general US clinical setting:

Retention through Enhanced Personal Contact: "REP-C"

Intervention Activities: Enhanced Contact Arm

Enhanced Personal Contact With HIV Patients Improves Retention in Primary Care: A Randomized Trial in 6 US HIV Clinics

Lytt I. Gardner,¹ Thomas P. Giordano,² Gary Marks,¹ Tracey E. Wilson,³ Jason A. Craw,¹ Mari-Lynn Drainoni,^{45,6} Jeanne C. Keruly,⁷ Allan E. Rodriguez,⁸ Faye Malitz,⁸ Richard D. Moore,⁷ Lucy A. Bradley-Springer,¹⁰ Susan Holman,¹¹ Charles E. Rose,¹ Sonali Girde,^{1,12} Meg Sullivan,⁵ Lisa R. Metsch,¹³ Michael Saag,¹⁴ and Michael J. Mugavero,¹⁴ for the Retention in Care Study Group⁸

Table 2. Retention in Care Outcomes by Intervention Arm, Retention in Care Study, 2010–2012 (N = 1838)

Study Arm	Visit Constancy, %ª	Risk Ratio (95% CI)	Visit Adherence, %b	Risk Ratio (95% CI)
Enhanced contact only (n = 615)	55.8	1.22 (1.09-1.36)	72.5	1.08 (1.05–1.11)
Enhanced contact plus skills (n = 610)	55.6	1.22 (1.09-1.36)	70.9	1.06 (1.02-1.09)
Standard of care (n = 613)	45.7	Ref	67.2	Ref

Abbreviation: CI, confidence interval.

Thomas P. Giordano

^a Defined as percentage of participants with a care visit in each of 3 consecutive 4-month intervals.

^b Defined as each patient's kept visits divided by scheduled appointments (excluding canceled).