

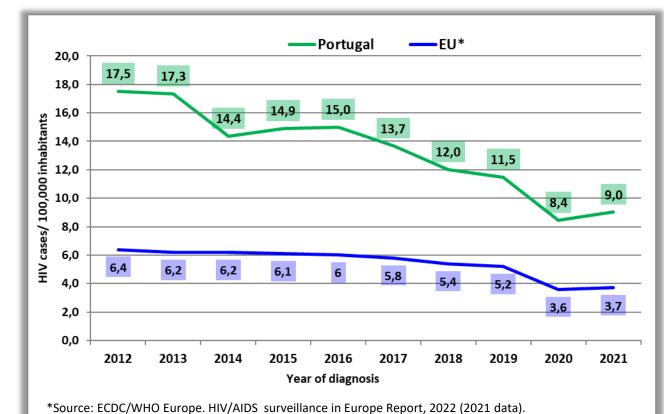
X GGD X Amsterdam

1st 95 estimations at the city-level using the **ECDC** modelling tool: outcomes and challenges

Helena Cortes Martins - Portugal National Institute of Health & National Programme for STI and HIV

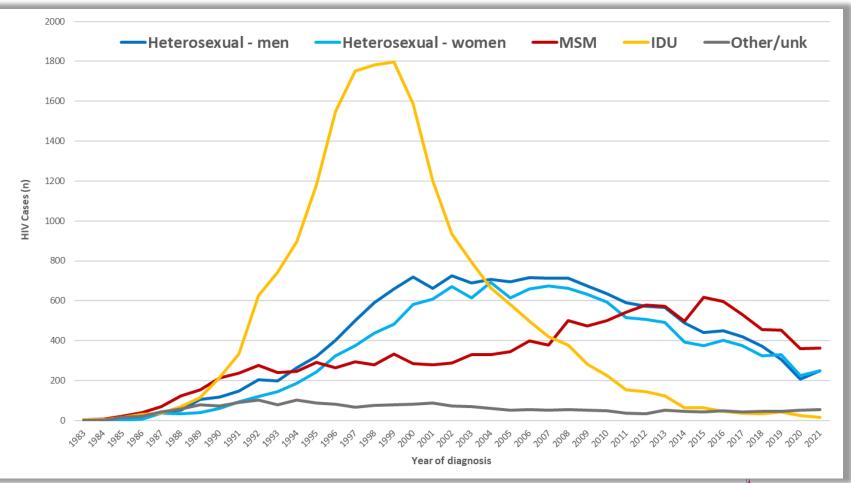
REPÚBLICA PORTUGUESA SING NACIONAL DE SAÚDE DE CONSTRUCTOR ACIONAL DE SAÚDE DE CONSTRUCTOR DE SAÚDE DE CONSTRUCTOR DE SAÚDE DE CONSTRUCTOR DE SAÚDE DE CONSTRUCTOR DE SAÚDE SAÚDE

September 25-27, 2023 | RAI Amsterdam Convention Center


Outline

- I. Portugal HIV epidemiology
- II. Informing Portuguese FTC on the characteristics of their HIV epidemics
- III. Assessing the number of PLWHIV and the 1st 95 at local level
- IV. Findings & challenges

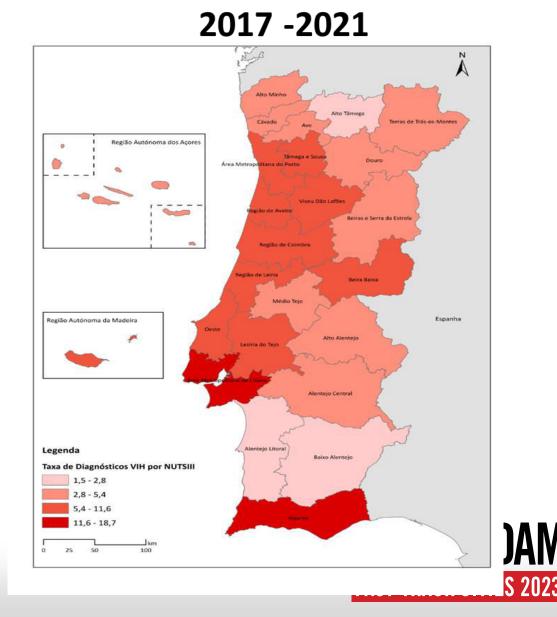
I. Portugal – HIV epidemiology


- Population 10.3 million
- 64,257 cumulative HIV cases (1983-2021)
- One of the highest rates of new HIV diagnosis within EU countries
- In 2021, ≈ 45,000 people living with HIV (PLWHIV)
- In 2017, Portugal achieved the 90-90-90 goals (92,2-90,3-93,0)

AMSTE DAM FAST-TRACK CITIES 2023

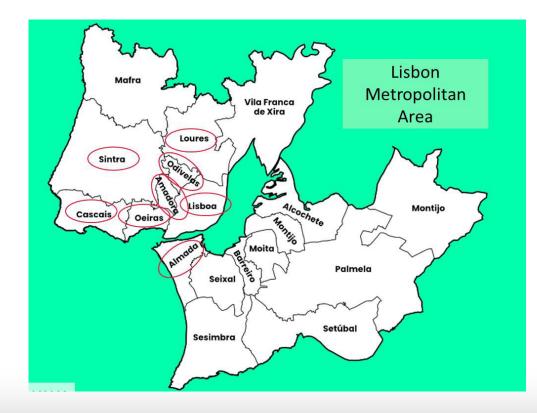
I. Portugal – HIV epidemiology

- Transmission among IDU was the main driver of the epidemic during the 90s.
- Currently, sexual transmission
 is predominant, with
 heterosexual transmission
 being the most frequent
 overall and MSM representing
 most of cases among men.



I. Portugal – HIV epidemiology

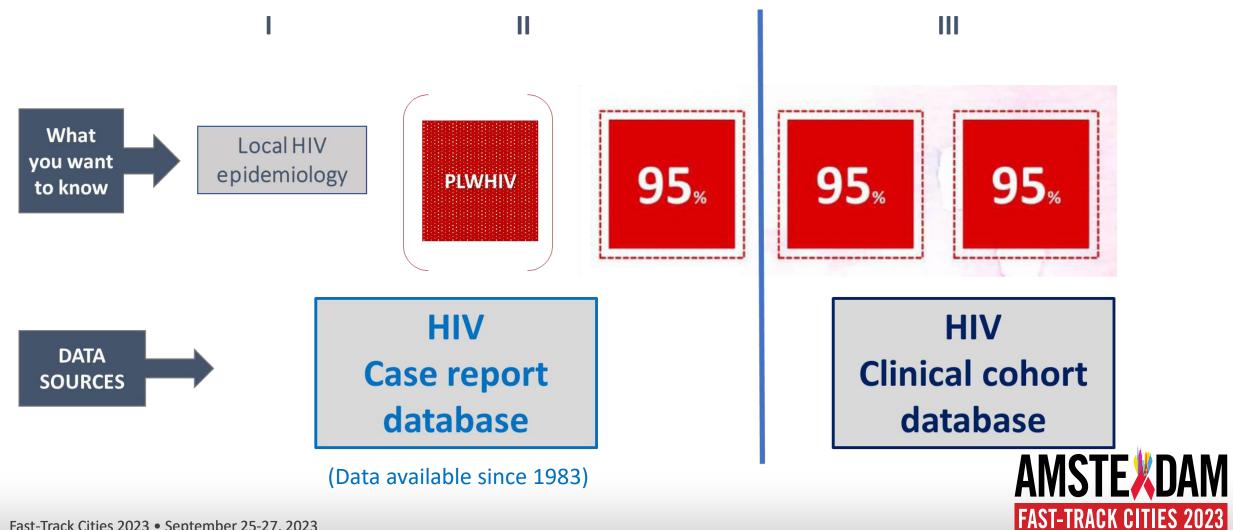
- The highest rates of new HIV diagnosis are found in Lisbon Metropolitan Area (M.A.) and Algarve


Portugal – 10.9 cases/100,000 inhab. Lisbon M.A. – 18.7 cases/100,000 inhab Algarve – 13.6 cases/100,000 inhab.

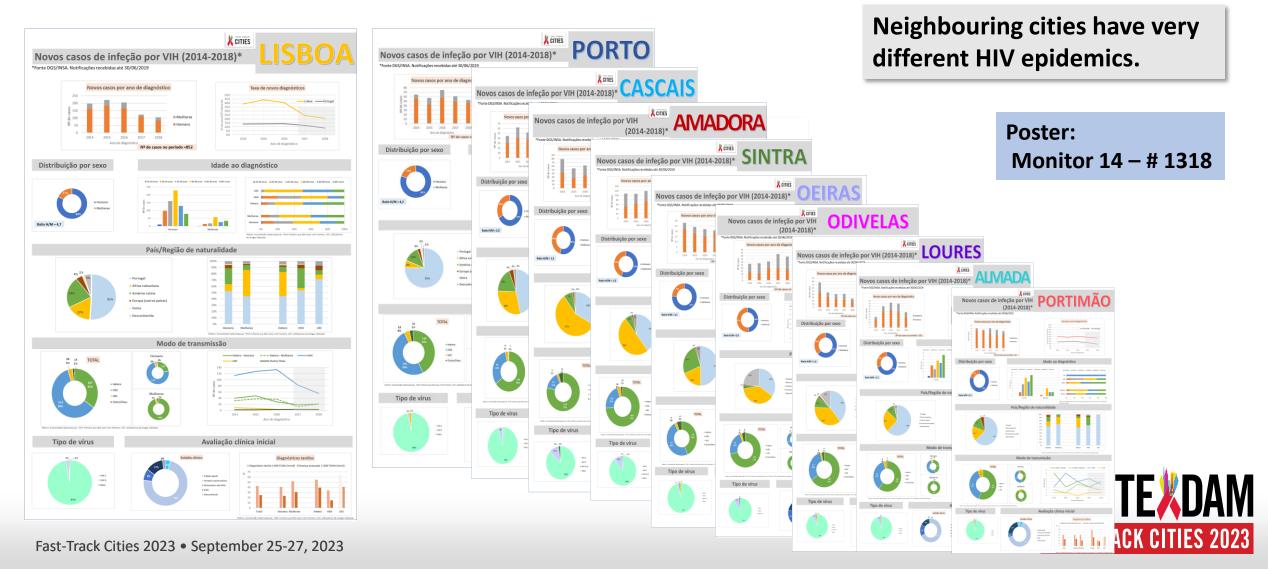
Portugal – 10,9 cases/10⁵ inhab.

I. Portugal – HIV epidemiology

- Cities with the highest rates of new HIV diagnosis have joined Fast Track Cities initiative.



	Municipality	Number of cases (2017-2021)	Cases/10 ⁵ inhab.	Rate ratio (RR)
	Portimão	88	31,2	2,9
	Lisboa	708	27,5	2,5
	Amadora	247	27,4	2,5
	Porto	277	25,3	2,3
	Sintra	471	24,2	2,2
	Cascais	236	22,1	2,0
	Almada	183	21,5	2,0
	Sever do Vouga	12	21,2	1,9
	Odivelas	161	20,4	1,9
	Lagos	26	16,8	1,5
	Loures	173	16,5	1,5
	Seixal	134	16,0	1,5
	Faro	48	15,4	1,4
	Albufeira	31	14,8	1,4
	Oliveira do Bairro	17	14,2	1,3
	Aveiro	54	13,7	1,3



Fast-Track Cities 2023 • September 25-27, 2023

II. Informing Portuguese FTC on the characteristics of their epidemics

II. Informing Portuguese FTC on the characteristics of their epidemics

II. Informing Portuguese FTC on the characteristics of their epidemics

City	Population	Cumulative HIV cases (1983-2018)	PLWHIV (rough estimate)	HIV prevalence (%)
LISBOA	507.220	12.015	7500	1,48%
PORTO	215.284	5.243	2900	1,35%
CASCAIS	212.474	2.359	1600	0,74%
AMADORA	181.724	2.355	1700	0,94%
SINTRA	388.434	2.878	2200	0,57%
OEIRAS	176.218	1.351	900	0,51%
ODIVELAS	159.602	894	600	0,38%
LOURES	211.359	1.841	1200	0,57%
ALMADA	168.987	2.194	1300	0,77%
PORTIMÃO	55.416	552	350	0,63%

III. Assessing the number of PLWHIV and the 1st 95

- Estimating the number of PLWHIV must be done using mathematical models.
- We use "ECDC HIV Modelling Tool" for national estimates, option "Incidence method", once HIV data are available since 1983.
- The model assesses the progression of HIV from the time of infection to diagnosis or development of AIDS in the absence of antiretroviral treatment.
- "ECDC HIV Modelling Tool" outputs:
 - PLWHIV (n)
 - PLWHIV diagnosed (n)
 - PLWHIV undiagnosed (n) & (%)
 - New infections per year (n)
 - Time from infection to diagnosis (years)

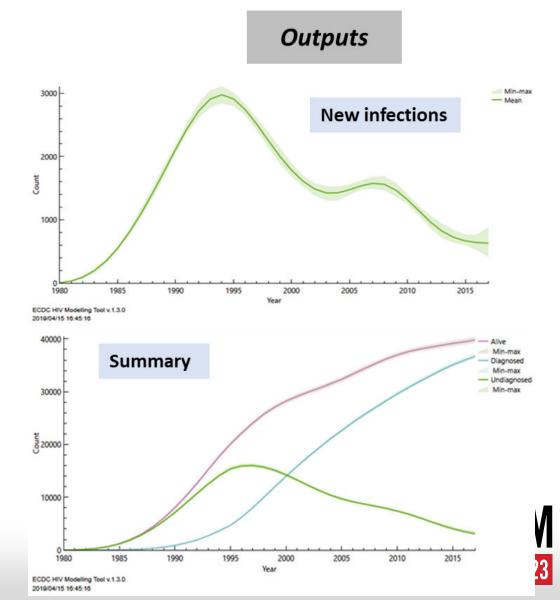
III. Assessing the number of PLWHIV and the 1st 95

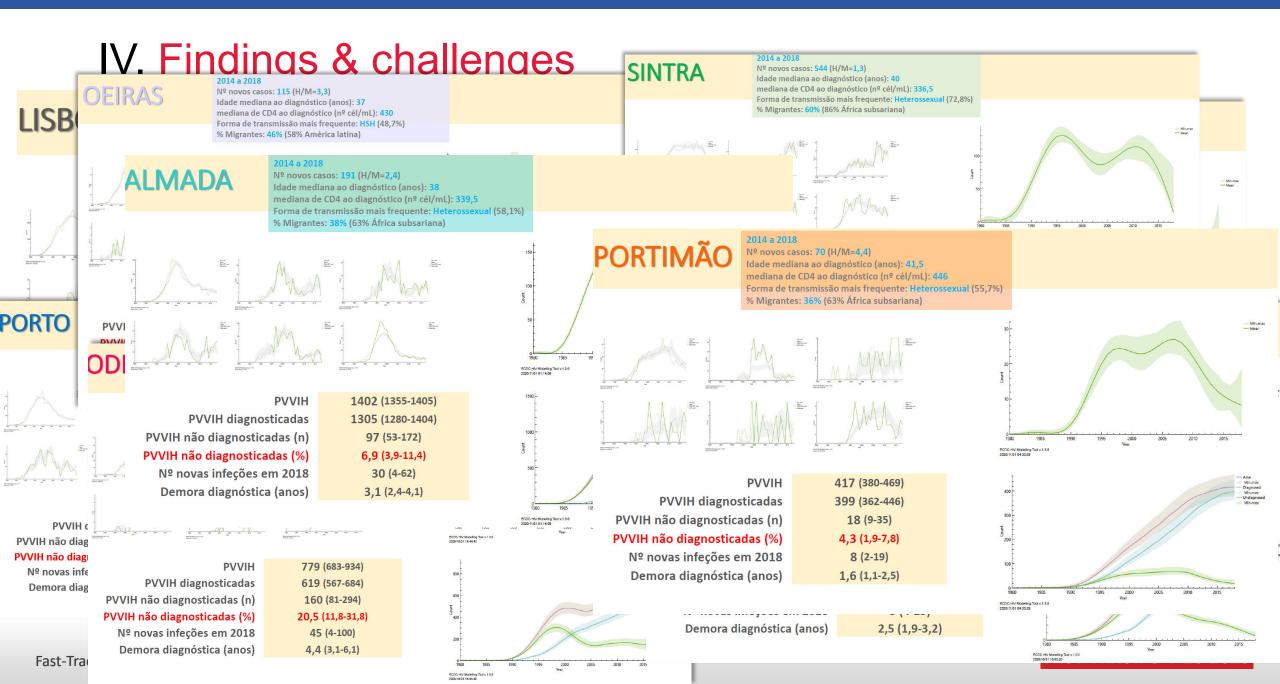
ECDC HIV Modelling Tool

- Data used:
 - Number of HIV cases/year of diagnosis (total & stratified by CD4 counts)
 - Number of HIV cases with concomitant AIDS diagnosis/year of diagnosis
 - AIDS cases/year of AIDS diagnosis
 - Dead /death year
- Model parametrization (ex.):
 - Events that might have influenced HIV epidemics
 - Changes in the probability of diagnosis

#FTC2023

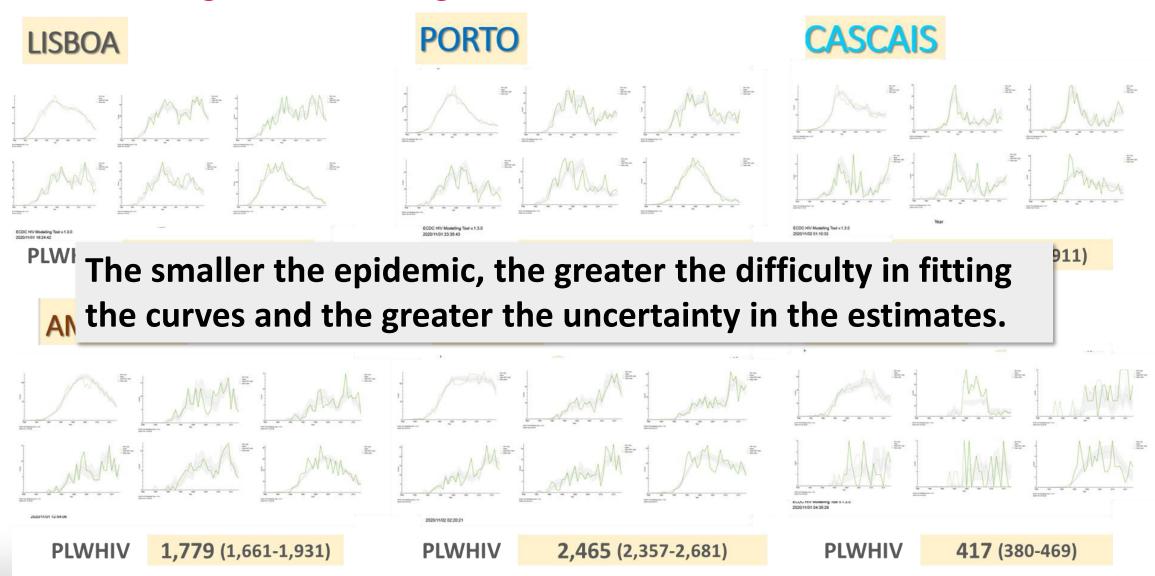
III. Assessing the number of PLWHIV and the 1st 95

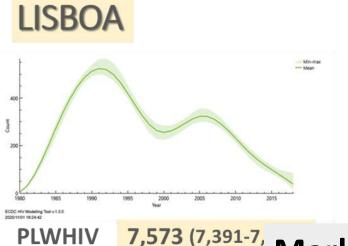

ECDC HIV Modelling Tool

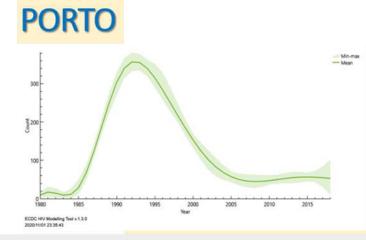

Adjustment of the model parameters to data:

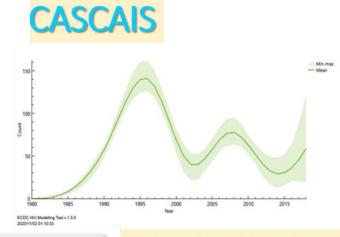
And the set of the

Goodness of fit


Fast-Track Cities 2023 • September 25-27, 2023

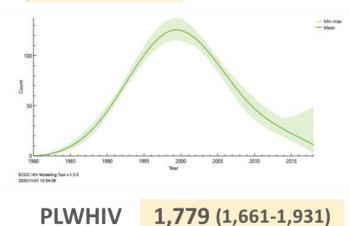

#FTC2023

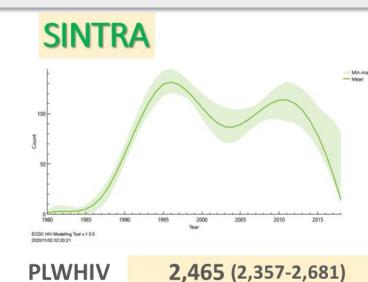

IV. Findings & challenges - Goodness of fit



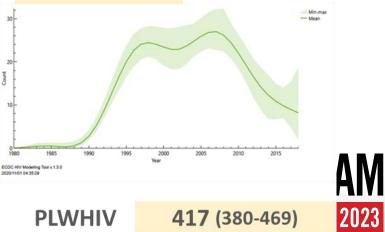
Fast-Track cities 2025 - September 25-27, 2025

IV. Findings & challenges- Incidence





³⁹¹⁻⁷ Marked differences in incidence curves


1,734 (1,623-1,911)

AMADORA

FAST-TRACK CITIES 2023

IV. Findings & challenges - Estimates

	LISBOA	PORTO	CASCAIS	OEIRAS	AMADORA	SINTRA	ODIVELAS	LOURES	ALMADA	PORTIMÃO
PLWHIV	7,573	3,052	1,734	1,017	1,779	2,465	779	1,324	1,402	417
	(7,391-7,816)	(2,910-3,199)	(1,623-1,911)	(950-1,124)	(1,661-1,931)	(2,357-2,681)	(683-934)	(1,255-1,427)	(1,355-1,405)	(380-469)
PLWHIV diagnosed	7,375	2,856	1,557	967	1,674	2,163	619	1,265	1,305	399
	(7,197-7,592)	(2,729-2,991)	(1,475-1,655)	(910-1054)	(1,574-1,772)	(2,069-2,267)	(567-684)	(1,190-1,361)	(1,280-1,404)	(362-446)
PLWHIV undiagnosed (n)	(1! Citie	es were	at diffe	rent sta	ages of	attainin	ng 1 st 9	0/95	97 (53-172)	18 (9-35)
PLWHIV undiagnosed	2.6	6.4	10.2	4.9	5.9	12.2	20.5	4.4	6.9	4.3
(%)	(2.0-3.6)	(4.5-8.8)	(6.6-17.3)	(2.1-13.3)	(3.7-11.3)	(9.5-18.8)	(11.8-31.8)	(2.8-7.8)	(3.9-11.4)	(1.9-7.8)
New infections in 2018	38	53	59	11	11	14	45	5	30	8
	(15-84)	(11-103)	(19-121)	(1-48)	(2-49)	(12-82)	(4-100)	(4-25)	(4-62)	(2-19)
Diagnostic delay	2.3	3.4	3.5	3.2	3.6	4.4	4.4	2.5	3.1	1.6
(years)	(2.0-2.7)	(3.0-3.9)	(2.7-4.7)	(2.1-5.1)	(2.8-5.0)	(3.7-5.5)	(3.1-6.1)	(1.9-3.2)	(2.4-4.1)	(1.1-2.5)
AMSTEXDAM										

Final remarks:

Modelling local epidemics is feasible, although:

- Smaller cities' epidemics can be more difficult to model;
- Estimates by gender or transmission mode/key populations might not be possible at local level;
- Incomplete data series or high % of missing data can have more impact at city level estimates.

Centralizing modelling exercises for same country/region cities might be a good strategy to guarantee that models being used, and respective parameterizations, are equivalent.

Thank you for your attention!

Fast-Track Cities 2023 • September 25-27, 2023