

Dynamic Association between Intra-patient Variability in ARV Plasma Concentration and HIV RNA Viral Suppression - Findings from a longitudinal HIV study with Ingestible Sensor Monitoring

> Yan Wang, PhD UCLA

Adherence 2023 · June 11-13 · Puerto Rico

Adherence to ART

Measure adherence

- Self-report questionnaires
- Directly observed therapy
- Electronic devices
- Pick-up/refill rates
- New sampling methods (e.g. dried blood spot)
- Sampling matrices (e.g. hair, saliva and urine)

Adherence to medication

Overview of the proteus digital health feedback

#ADHERENCE2023

Study design

Inclusion criteria: HIV-infected

individuals (≥18 years) who were in care and had difficulty adhering to their recommended regimens

- Self-reported adherence <90%
- Gaps in treatment

Screened for eligibility (n=136)

- Missing appointments (>2, not rescheduled)
- VL elevated in the past 6 months.

Excluded (n=6)

1 Not accepting incoming calls 1 Withdrew due to behavior 2 Difficult blood draw

1 Real-time monitoring related

1 Compensation related

#ADHERENCE2023

Pharmacokinetics (PK) and Adherence

Plasma concentration

Plasma concentration refers to the concentration of an agent in the plasma which is derived from full blood. Plasma concentrations are used to define major PK parameters.

Overview of adherence and PK/PD

PK - timing and dosage

Blood samples at

- **Baseline:** before(0), 2 hour, 6 hour follow an observed dose
- Follow up: week 4, 8, 12, 16, 20, 24, 28
- All of these study participants were receiving a TAF tenofovir alafenamide - containing regimen
- The TAF dose is **25mg** once daily except for those receiving Genvoya, where the TAF dose is **10mg**.

The plasma concentration by dosage

9

One compartment linear PK model

- **Final Model:** One-compartment PK linear model with a proportional error and random effects of person and time
- Use first-order conditional estimation (FOCE)
- Extended least square (ELS) interaction between inter-, intra-, and residual error
- Model selection: likelihood function (-2LL) and visual inspection (GOF plot)
- **Software:** Phoenix WinNolim 8.3 for PK/PD analysis

Predicted concentration over time

11

Pharmacokinetic parameters

- Intra-patient variability
- Clearance, volume of distribution, absorption rate were estimated in the model
- Concentration predictability score is defined as,

 $\frac{\text{Observed concentration}}{\text{Predicted concentration}} \in [0.6, 1.4]$

• **IPAM** – % of ratio within this range over study period

IPAM score

Group	No. of subjects	IPAM statistics	
		Mean ± SD	Range
All	81	0.82 ± 0.26	0.00-1.00
High (> 0.8)	52	0.97 ± 0.06	0.83-1.00
Low (≤ 0.8)	29	0.55 ± 0.24	0.00-0.80

Use the 33rd percentile of the IPAM in the population (0.8) as the cut-off.

Brundage, R. C., Yong, F. H., Fenton, T., Spector, S. A., Starr, S. E., & Fletcher, C. V. (2004). Intrapatient variability of efavirenz concentrations as a predictor of virologic response to antiretroviral therapy. Antimicrobial agents and chemotherapy, 48(3), 979–984. https://doi.org/10.1128/AAC.48.3.979-984.2004

Intervention & IPAM score - Time to first viral rebound

Group	Rebound	Total	Rate
IS & High	4	27	0.15
IS & Low	2	14	0.14
Control & High	6	25	0.24
Control & Low	9	15	0.6

• Log rank test statistic between four groups yielded a p-value of 0.004.

Proportion without viral rebound

Cox regression model - time to first VL rebound

- High-IPAM score group longer time to the first viral rebound (p<0.01),
- The adjusted risk ratio, high vs low, is 0.25 with 95% CI (0.09, 0.72).

Model	Intervention phase (16 weeks)	Study period (28 weeks)		
Simple model	Risk ı	Risk ratio (95% CI)		
Intervention (IS vs Control)	0.41 (0.14, 1.18)	0.36 (0.14, 0.92)*		
IPAM (High vs Low)	0.29 (0.11, 0.80)*	0.42 (0.18, 0.99)*		
Adjust covariates				
Intervention (IS vs Control)	0.33 (0.11, 0.99)*	0.29 (0.11, 0.79)*		
IPAM (High vs Low)	0.25 (0.09, 0.72)**	0.40 (0.17, 0.97)*		
age	0.99 (0.95, 1.04)	0.98 (0.94, 1.02)		
baseline log10 RNA (per unit change)	1.85 (1.19, 2.87)**	1.61 (1.07, 2.43)*		
baseline log2 CD4% (per unit change)	1.03 (0.84, 1.25)	0.96 (0.82, 1.13)		
* <0.05, ** <0.01, ***<0.001		Unpublished results		

Discussions

- Intrapatient variability of drug concentration over time can be used as a predictor for adherence and virological outcomes
- **IPAM score** is a pharmacologically based measure of intrapatient variability of drug concentration
- High IPAM score is associated with improved virologic (low VL rebound rate and long the time to rebound) and immunologic outcomes (high CD4)

Future work

- Predict longitudinal plasma concentration to better understanding the dynamics of drug response
- Design dose-adjust strategies to achieve target drug exposures and to reduce intrapatient variability, e.g. concentration-controlled ART
- Develop a proactive and integrative approach to improve adherence and drug response

Acknowledgement

UCLA

- Honghu Liu, PhD (PI)
- Jason Shen, PhD
- Di Xiong, MS
- Yilan Huang, MS
- Linyu Zhou, MS

THE LUNDQUIS

- Eric Daar, MD (mPI)
- Katya Corado, MD
- Lisa Siqueiros
- Mario Guerrero, MD
- Investigational Drug Services

Nebraska Medical Center

• Courtney Fletcher, Pharm.D.

#ADHERENCE2023

- Veenu Bala, PhD
- Kayla Campbell, DNP
 - Mark Rosen, MD

Research reported in this talk is supported by **R01MH110056** and **T32MH080634**

Picture generated by AI #midjourney