Pitfalls (and Opportunities) Using Routine Health Systems Information for Engagement Research:

Using What’s in the Fridge

Elvin Geng MD MPH
Division of HIV/ID and Global Medicine
Department of Medicine, UCSF
Routine Data for Implementation Science to End the HIV Epidemic

• Analyses from real world, clinic-based, or administrative sources are often very relevant and representative
 • Good for understanding engagement and retention
 • But there are shortcoming to this data

• Recipes to enhance rigor?
 • Novel counterfactual approaches
 • Targeted supplementation

• Value of research using data from program sources
 • From “garbage in garbage out” to “wabi sabi”
Hungry? Case Presentation

5:30 PM
Rush out of work mid-email

5:59 PM
Get to school one minute before it closes to pick up child

6:25 PM
Arrive at home with hungry child. Hungry partner is on the way home and sends you a text message

“What’s for dinner?”
Option A: Vs. Option B:
Data for engagement research: lots in the fridge

- Can do randomized trials (e.g., motivational interviewing, case management, peer navigation)

- International Epidemiological Databases to Evaluate AIDS
- CFAR Integrated Network of Clinical Systems
- Administrative EMR data
- Surveillance?

- Appointment and visits often captured well even when other elements are not
Research on Service Delivery and Engagement is like Dinner

• There are advantages to using what you have...
• *There is some urgency*
 • Get new data or use the data you got?
• *You want to be efficient*
 • If you don’t use what you have it’s going to get old

...But, what you have might not be exactly what the recipe calls for
Randomized Trials - Not the Only Recipe for Understanding Interventions

• “Only randomized trials give you causality”

• Not true... but need some assumptions*

• RCT’s (traditionally) control the context... but we want effects in context**

*Also some things you can’t randomize (e.g., air pollution)
**Some things get distorted in a trial setting
Alternative Recipes for Rigor in Engagement Research using Routine Data...

- Causal inference techniques in epidemiology
- Propensity scores
- Inverse probably weights
- Instrumental variables
- *Natural experiments*
Recipe for Using what’s in the Fridge: Natural experiments

• A condition or exposure not under the control of researchers but which is plausibly randomly assigned

• Can be used to learn about causal effects (in the real world)

• Examples
 • 1854 Cholera outbreak – water supply by two companies essentially randomly distributed in London (John Snow ~ 1854)
 • Effect of the draft into the Vietnam war on health outcomes

(Hearst, Newman and Hully NEJM 1986)
Case Presentation Continued: Pitfalls and (More) Opportunities

5:30 PM

Rush out of work mid-email

5:59 PM

Get to school one minute before it closes to pick up child

6:25 PM

Arrive at home with hungry child. Hungry spouse is on the way home and sends you a text message:

In fridge: chicken, broth, noodles, scallions, and anise – perfect for noodle soup. Now just missing one thing... Cilantro

6:27 PM

“Don’t forget, your mom is coming.”
Recipe 2: Using (mostly) what’s in the fridge and going to corner bodega
Just one problem: loss to follow-up (unknown outcomes)
Consequences...?

• Is the experience after dropping out the same as the it is for those who continue to be observed?

• If the answer is no then...
 • Descriptive estimates could be wrong (retention, mortality)
 • Analytic estimates wrong (spurious associations and miss effects)
 • Looking at heterogeneity (geographical, over time) a problem
 • Left with cross sectional analysis of patient characteristics at entry?

• Pitfalls with routine data? Like noodle soup with no noodles
A Sampling-based Solution?

All Patients in a Health Unit

Patients who Continue to be Observed

Patients lost to follow-up (B)

Patients sought by tracking (C)

Patients with outcome ascertained by tracking (D)

$P_w = \text{Patients Lost to Follow-up (B)}$

$\text{Patients Successfully Tracked (D)}$
Tracing a Sample: Targeted Supplementation

Active Patients in 71 CIDRZ Supported Facilities (185,343)

- Presumed Alive 183,585 (99%)
- Lost to Follow-up 40,485 (22%)
 - Random Sample 4,362 (11%)
 - Updated status found 3,257 (75%)
 - Found Alive 2,698 (83%)
 - Found dead 559 (17%)
 - Not found 1,105 (25%)
- Known Dead 1,758; (1%)
Retention in Four Provinces in Zambia (N=165,454)

From EMR

After targeted supplemental data from sampling

Izukani Sikazwe 2019 PLOS Medicine
(1) Consistently High Adherence/Retention (28.5%)

(2) Early Nonadherence/Consistent Retention (22.2%)

(3) Gradually Decreasing Adherence/Retention (21.6%)

(4) Early LTFU with Reengagement (8.6%)

(5) Early LTFU (8.7%)

(6) Late LTFU (10.4%)

MPR over last 3 months In Care (%) Deaths
Cumulative Incidence of Mortality by Trajectory Group

log-rank p<0.0001

Days since ART Initiation

- Consistently High MPR/Retention
- Early nonadherence/Consistent retention
- Gradual Decreasing MPR/Retention
- Early LTFU with Recovery
- Early LTFU
- Late LTFU
Acknowledgements

Thomas Odeny
Fred Semitala
Charles Holmes
Izukanji Sikazwe
Laura Beres

Maya Petersen
Kombatende Sikombe
Constantin Yiannoutsos
Kara Wools Kaloustian
Jeanna Wallenta

Aaloke Mody
Jeff Martin
Ingrid Wilson
David Glidden

Nancy Padian
Diane Havlir
Dr. Nancy Czaicki (1987-2017)
Carolyn Bolton-Moore

Funders: NIH, Bill and Melinda Gates Foundation, World Health Organization