Accounting for variable adherence and sexual risk behavior patterns in the design and analysis of PrEP trials, and when modeling the impact of PrEP implementation

Marijn de Bruin
University of Amsterdam
m.debruin@uva.nl
New HIV prevention routes promising

Å Oral and topical PrEP: mixed results

Å Main explanations for variability in effects:¹
- Statistical chance (unlikely)
- Biological paths (mostly unclear)
- Non-adherence (most plausible)

Å Modeling paper suggests even more complex situation²

Å Implications possibly relevant for current discussions

Goals talk

Â Explain the key concepts model paper. Steps:
 1. Factors that influence absolute risk (AR).
 2. ..also influence on relative risk (RR) in trials..
 3. ..and the adherence - RR relationship

Â Apply cumulative probability model to MB trial data:
 í True method effectiveness 50% per-contact risk reduction
 í Per-contact infection risk of .003\(^1\) with HIV+ partner
 í Per-contact risk reduction condom use 80%\(^2\)

Â Possible implications for trial design, analyses and models

(1) Coverage = adherence percentage?

HIV treatment study:
- Adherence = (# pills taken / # pills prescribed) * 100
- 70 pills taken in 100 days for QD = 70% adherence
- Represents 30 ‘uncovered days’ (under certain assumptions)

- PrEP trial (examples for microbicide)
- Adherence = (# doses inserted / # contacts) * 100
- 70% over 100 days can be 30/100 or 3/10 ‘uncovered’ contacts
- Control for # of contacts when predicting AR infection

- Relevant in RCTs, i.e. does it carry over to relative risk?
What does this illustrate?

1. Direct effect of adherence on AR & RR
2. Direct effect of contact frequency on AR & RR
3. Contact frequency affect adherence – AR & adherence - RR relation
(2) Riskiness of the contact

- Evident that riskiness of a contact influences AR
 - Vaginal/anal, STD, treatment coverage area, condom use

- Riskiness effect on RR and adherence-RR relation?

<table>
<thead>
<tr>
<th>Number contacts</th>
<th>Adh 50%, no condom</th>
<th>Adh 50%, condom</th>
<th>Adh 100%, no condom</th>
<th>Adh 100%, condom</th>
<th>Ratio 50/100 no condom</th>
<th>Ratio 50/100 condom</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.85</td>
<td>0.77</td>
<td>0.65</td>
<td>0.53</td>
<td>1.31</td>
<td>1.45</td>
</tr>
</tbody>
</table>

- Separate adherence % for high-risk & low-risk encounters
(3) Number of partners

Å In real life not a single partner, and the more partners, the larger the probability of contact with an HIV+ partner.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>AR + Adh 50%</th>
<th>AR + Adh 100%</th>
<th>RR+ Adh 50%</th>
<th>RR + Adh 100%</th>
<th>Ratio 50/100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p * 400c</td>
<td>0.14</td>
<td>0.12</td>
<td>0.09</td>
<td>0.65</td>
<td>0.85</td>
<td>1.31</td>
</tr>
<tr>
<td>10p * 40c</td>
<td>0.21</td>
<td>0.16</td>
<td>0.11</td>
<td>0.54</td>
<td>0.78</td>
<td>1.44</td>
</tr>
</tbody>
</table>

p = partner * c = contacts = 400

Å AR, RR and adherence–RR relation depends on # partners.
All these factors simultaneously...

- Influence absolute and relative risks
- Influence the relationship adherence → relative risk
- Obscure the true method effectiveness (TME) in trials
Implications and illustrations

Â Role of (dominant) sexual behavior patterns:
1. Abdool Karim: few contacts, few partners, high condom
2. Skoler-Karpoff: more frequent, less condom use
3. Feldblum: more frequent & partners, high condom use

Â Role of single vs high-risk & low-risk adherence rates

Â Caprisa parameters as in de Bruin e.a. (2012)¹

¹ de Bruin e.a, PLoS one, 2012; 7(8):e44029
Trial design implications

- Trial power for different sexual risk behavior patterns

<table>
<thead>
<tr>
<th>Study</th>
<th>Probability control</th>
<th>Probability intervention</th>
<th>Cumulative RR</th>
<th>Required sample size/arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.134</td>
<td>0.085</td>
<td>0.634</td>
<td>669</td>
</tr>
<tr>
<td>2</td>
<td>0.247</td>
<td>0.195</td>
<td>0.789</td>
<td>1034</td>
</tr>
<tr>
<td>3</td>
<td>0.620</td>
<td>0.418</td>
<td>0.674</td>
<td>101</td>
</tr>
</tbody>
</table>

- Dito for general vs separate adherence % high & low risk

- Implication 1: Consider effect modifiers in sample size computations and update based on actual participant behavior

- Implication 2: Accurately measure all relevant variables and patterns (e.g. adherence high-low risk encounters)
Trial analysis implications

• RR is a unique product of trial behavior * time * TME (*other)

• TME can be compared and used as input for (CE) models

• Implication 3: In order to identify the true treatment effect, primary trial analyses may have to control for effect modifiers (not just overall adherence)

• Effect differential adherence on TME conclusions, Caprisa
 - 70% vs. 78% low & 44% high risk (1.8 times lower adherence)
 - TME estimate 57% versus 68%
Implications for (CE) models

- Modest changes in parameters can have large influence on projections (e.g. TME 67% or 58%)

- (CE) Models advanced but assume general adherence percentage:
 - 61% overall: 580 infections prevented
 - 78% low vs 44% high risk (average 61%): 460 prevented (21% pts less)

- Implication 4: (CE) models require accurate TME estimates and actual population behavior estimates (e.g. adherence, condom use, etc)

- Implication 5: (CE) models may need to differentiate between adherence levels at high vs low risk encounters

Conclusion & limitations

Conclusions:
- Trial design, analyses and modeling studies could benefit from considering the influences described.

Future research:
- Empirically test model-based assumptions
- Improve measures and obtain accurate population data

Limitations:
- Illustrations based on average trial data
- Scenario’s somewhat different for oral versus topical
- Not all relevant variables included, e.g. frailty

1- O’Hagan e.a., AIDS, 2012;26(2):123-6