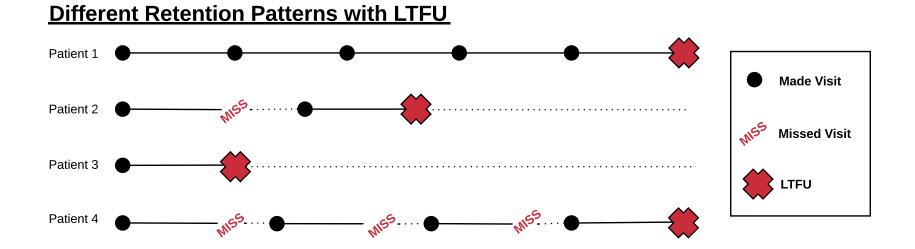
Longitudinal Engagement Trajectories and Risk of Death among New ART Starters in Zambia


Aaloke Mody, Ingrid Eshun-Wilson, Sheree R. Schwartz, Kombatende Sikombe, Sandra Simbeza, Njekwa Mukamba, Paul Somwe, Carolyn Bolton, Nancy Padian, Charles Holmes, Izukanji Sikazwe, Elvin Geng

Adherence 2018 June 9, 2018

Motivation

- Retention in HIV care is widely suboptimal across sub-Saharan Africa
- Previous studies have described how patients often transition in and out of HIV care, but current analyses often:
 - Reduce highly-dimensional retention histories into cross-sectional summaries (i.e., LTFU)
 - Obscure patient heterogeneity behind population-level averages

Motivation

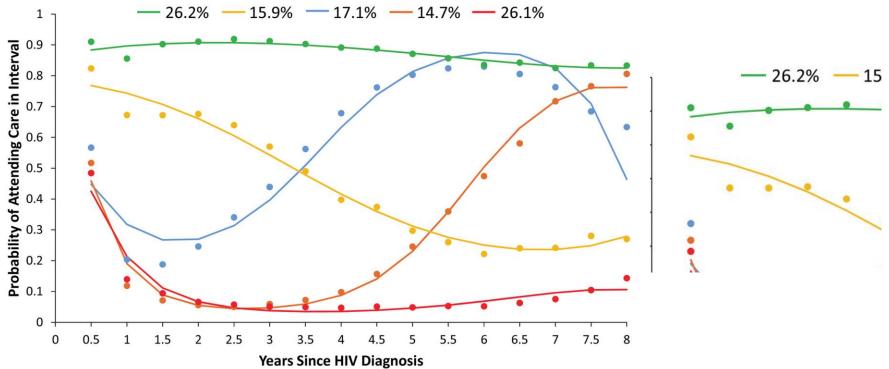
- Better characterization of these complex longitudinal retention patterns can give us a deeper understanding of patient retention and behavior
- May help uncover distinctive underlying behavioral phenotypes
 - Similar retention patterns may point to similar challenges to remaining in care
 - Improves our ability to target interventions for a diverse population
- We use group-based trajectory analysis—a form of latent class analysis—to better understand the temporal dynamics of patient retention and the heterogeneity in patient behaviors

Study Objectives

- To identify subgroups with distinct patterns in adherence and retention among patients newly started on ART in Zambia
- To identify predictors of belonging to subgroups with a specific engagement trajectory
- To estimate the association between different patterns of engagement and subsequent mortality

METHODS

Study Population


- HIV-infected adults newly started on ART between Aug 1, 2013 and Feb 1, 2015 in Zambia
- 64 clinics supported by the Centre for Infectious Disease Research in Zambia (CIDRZ) in Lusaka, Eastern, Western, and Southern Provinces

<u>Measurements</u>

- Better Info for Health study
 - EMR system used in routine HIV care in Zambia (SmartCare)
 - Active tracing of a random sample of patients lost to follow-up (LTFU) as of July 31, 2015 to accurately ascertain mortality

Group-Based Trajectory Analysis

- Identify subgroups that follow distinct longitudinal trajectories
 - Assume population made of distinct, but <u>unobserved</u>, subpopulations with different behavioral patterns
 - Use observed data to identify these groups (form of latent class analysis)

Powers JAIDS 2017

Group-Based Trajectory Analysis Steps

- 1. Use observed outcomes to simultaneously estimate 1) shape of trajectories and 2) their population-level distribution
 - Trajectories modeled as a function of time using flexible polynomials
- 2. Systematically assess various specifications and choose final model based on BIC
 - Number of groups and polynomial order <u>unknown</u> a priori

Model Specifications

- Outcomes for Trajectories (defined at every 30 day interval)
 - Medication possession ratio (MPR) over the past 3 months
 - LTFU Status (>90 days late to the last appointment)
- Observation Period
 - Time zero was date of ART initiation
 - Patients censored at the time of death, transfer, or end of observation (i.e., July 31, 2015).
- Excluded patients with less than 180 days of observation time (i.e., early deaths, transfers)
 - Allow individuals sufficient time to differentiate into a trajectory
- Sampling weights to account for tracing

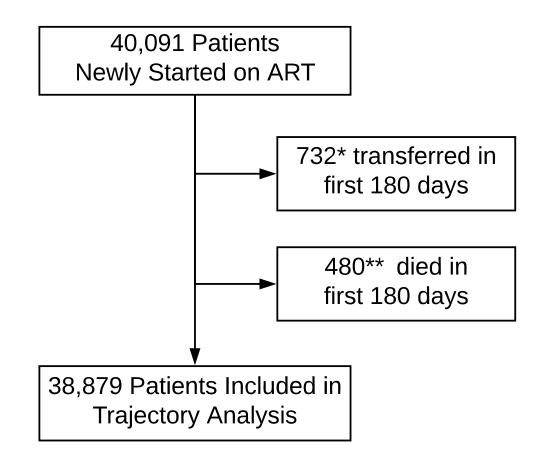
Group-Based Trajectory Analysis Steps

- 1. Use observed outcomes to simultaneously estimate 1) shape of trajectories and 2) their population-level distribution
 - Trajectories modeled as a function of time using flexible polynomials
- 2. Systematically assess various specifications and choose final model based on BIC
 - Number of groups and polynomial order <u>unknown</u> a priori
- 3. Estimate an individuals' probability of belonging to each trajectory groups given their observed outcomes (i.e., posterior probability)
 - Application of Baye's Theorem
- 4. Assign individuals to the trajectory group they are most likely to belong to based on posterior probabilities
- 5. Weight observations by the inverse of their classification error (i.e., the probability that they were assigned to one trajectory group when they belong to another) in regression analyses
 - Account for misclassification of group membership (BCH method)

Nagin Annu Rev Clin Psychol 2010; Bray Struct Equ Modeling 2015; Backk Struct Equ Modeling 2016

Analyses by Trajectory Group

- Predictors of Trajectory Group Membership
 - Multinomial Logistic Regression that included individual and cliniclevel characteristics

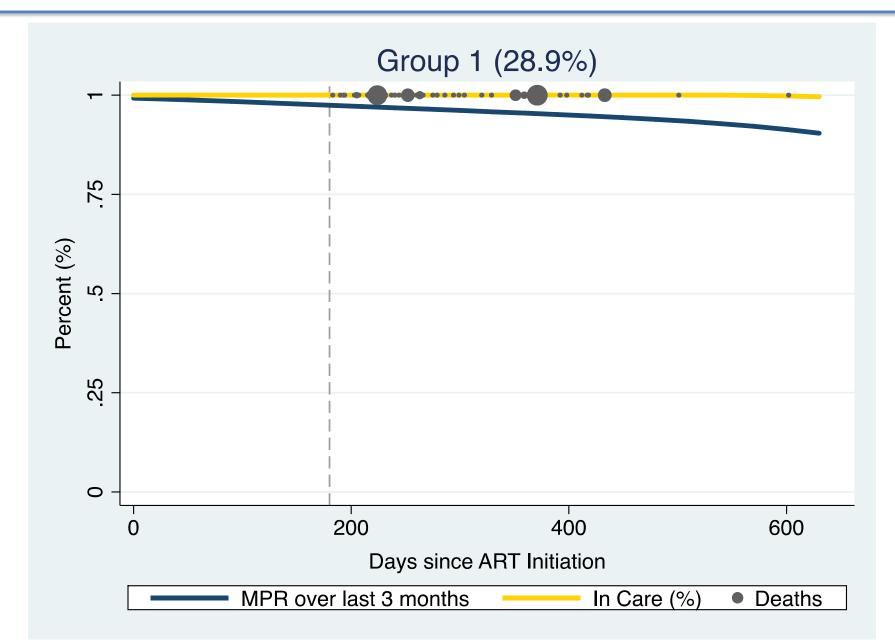

Analyses by Trajectory Group

- Predictors of Trajectory Group Membership
 - Multinomial Logistic Regression that included individual and cliniclevel characteristics
- Mortality Risk by Trajectory Group
 - Survival analysis stratified by trajectory group
 - Time zero was date of ART initiation
 - Administrative censoring at the time of transfer or end of observation
 - Bootstrapped confidence intervals
 - Adjusted Poisson Regression to estimate incidence rate ratios*
- Models weighted to account for classification error and sampling
- Multiple imputation (n=20) to address missingness in predictor variables

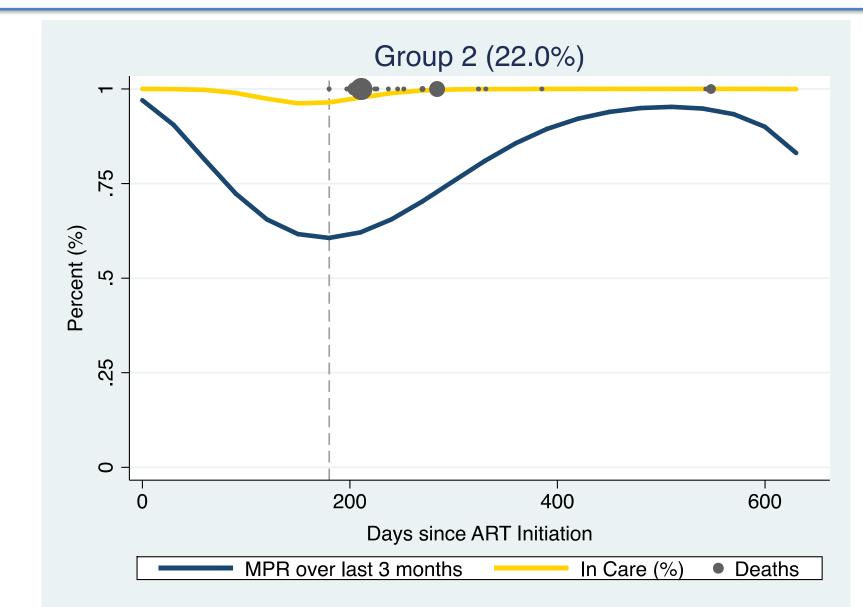
*Cox PH model inappropriate due to non-proportional hazards

RESULTS

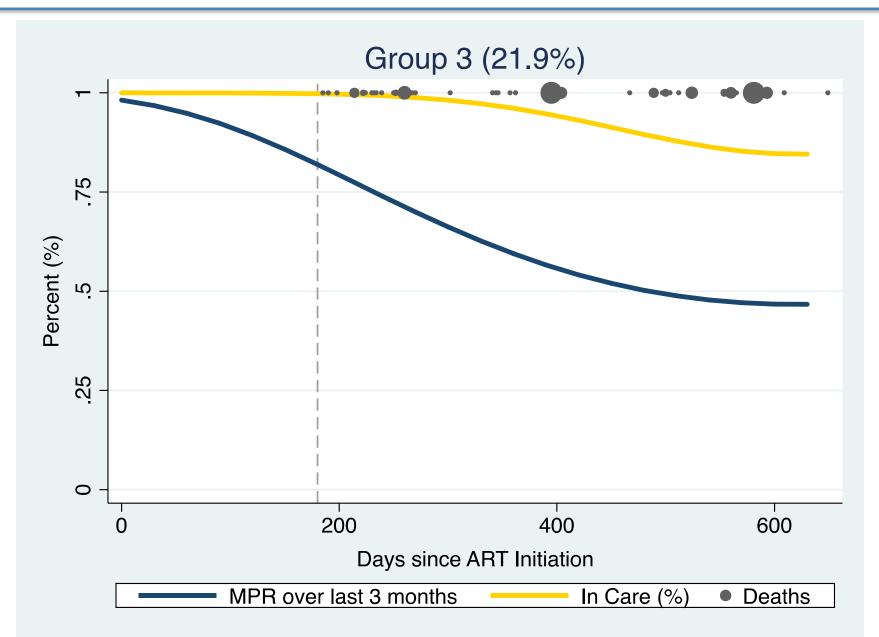
Study Population

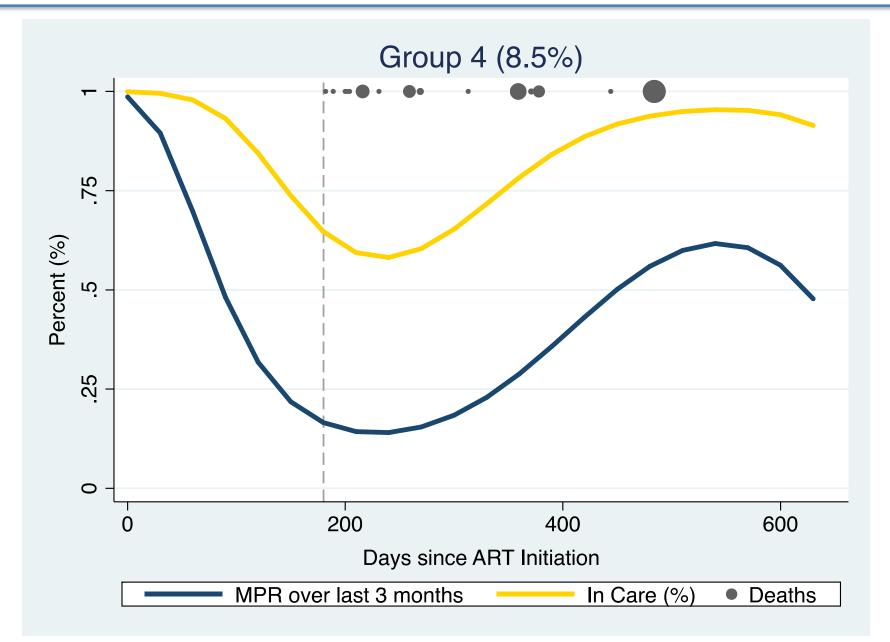

*1.8% of population accounting for sampling weights **3.2% of population accounting for sampling weights

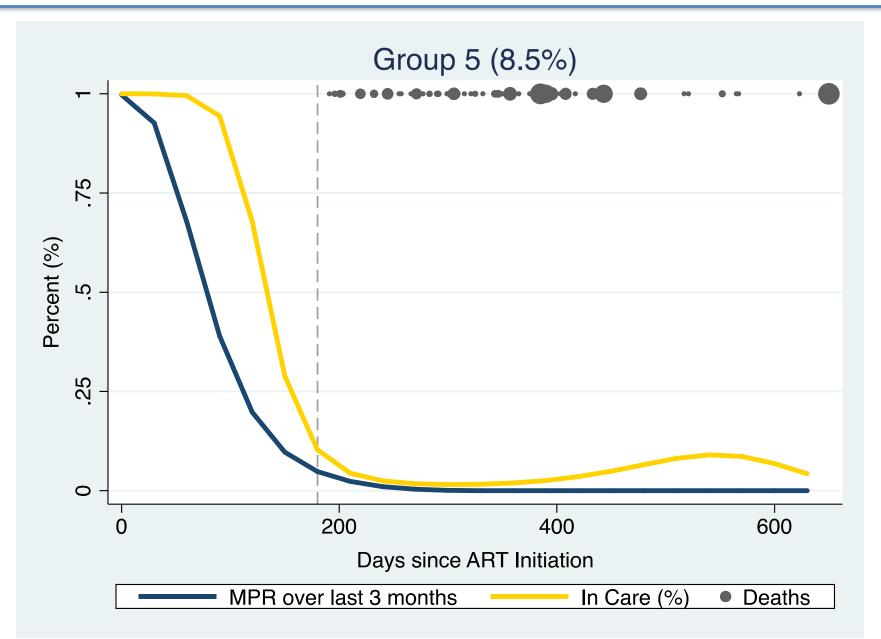
Patient Characteristics

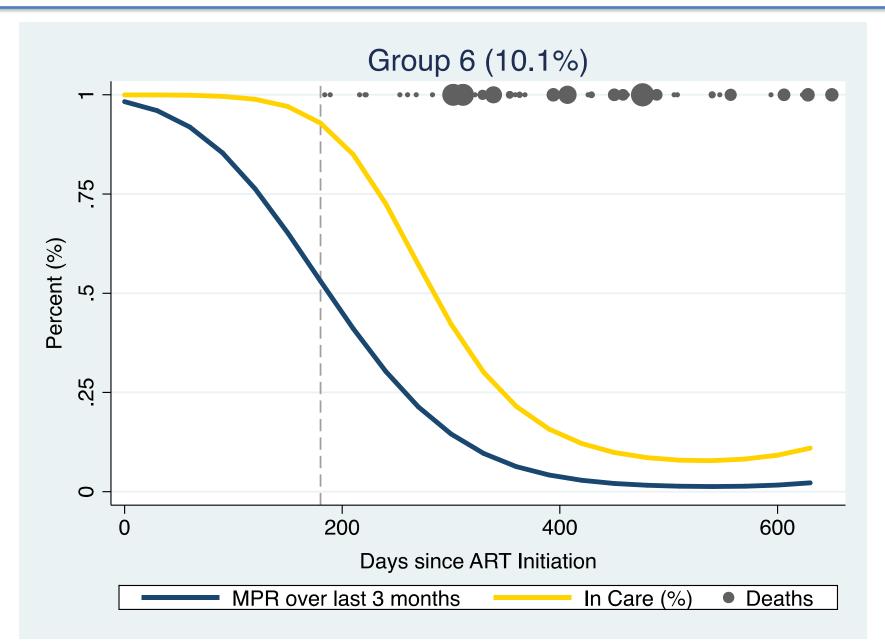

	All Patients (n=38,879)				
Sex, n (%)					
Male	14,286 (36.7)				
Female	24,593 (63.3)				
Median Age, years (IQR)	35 (29, 41)				
Median CD4 count, cells/µL (IQR)	280 (146, 431)				
WHO Stage, n (%)					
I	18,777 (57.0)				
II	6,645 (20.2)				
III	6,941 (21.1)				
IV	607 (1.8)				
TB in past 6m, n (%)	978 (2.5)				
Median Time to ART, days (IQR)	35 (14, 225)				
Province, n (%)					
Lusaka	20,238 (52.1)				
Eastern	7,673 (19.7)				
Southern	5,146 (13.2)				
Western	5,822 (15.0)				

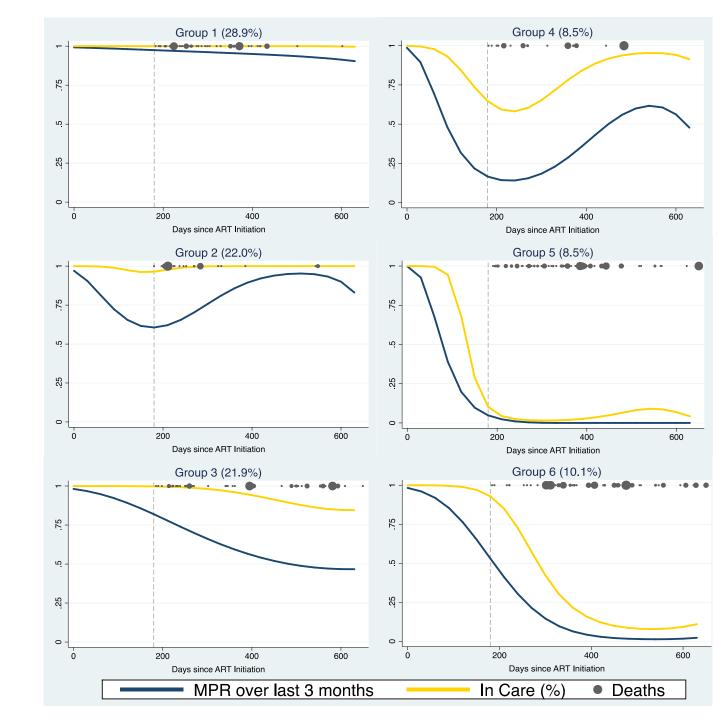
Median time observed, days (IQR): 429 (314, 571)


Consistently high MPR and retention (28.9%)


Suboptimal adherence early with late recovery, but consistent retention (22.0%)


Gradually decreasing MPR and retention (21.9%)


Early nonadherence/LTFU with late recovery (8.5%)


Early nonadherence/LTFU without recovery (8.5%)

Late nonadherence/LTFU without recovery (10.1%)

<u>Trajectory</u> <u>Groups,</u> <u>n=38,879</u>

Model Fit

<u>Classification Error</u>: Probability of being assigned to a particular trajectory group given one's "true" group

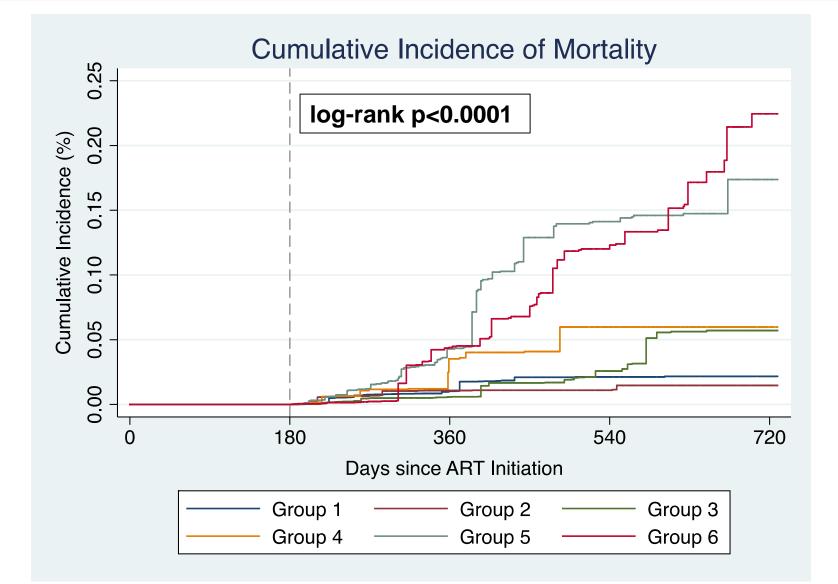
		"True" Trajectory Group								
		Group 1	Group 2	Group 3	Group 4	Group 5	Group 6			
•	Group 1	<u>95.3</u>	2.4	5.3	<0.1	<0.1	<0.1			
Trajectory oup	Group 2	1.1	<u>88.5</u>	6.2	3.0	<0.1	4.3			
Traje up	Group 3	3.6	7.0	<u>87.1</u>	0.8	<0.1	4.0			
	Group 4	<0.1	0.8	0.3	<u>91.3</u>	3.2	1.4			
Predicted Gro	Group 5	0	<0.1	<0.1	1.7	<u>96.0</u>	0.6			
	Group 6	<0.1	1.2	1.0	3.2	0.8	<u>89.6</u>			

Entropy for Overall Model: 0.957

Indicates good separation between trajectory groups

Patient Characteristics by Group, n=38,879

	Group 1 (28.9%)	Group 2 (22.0%)	Group 3 (21.9%)	Group 4 (8.5%)	Group 5 (8.5%)	Group 6 (10.1%)
Male Sex, %	36.2	35.9	37.3	34.8	35.9	41.6
Median Age, years (IQR)	36 (30, 43)	35*** (29, 41)	34*** (29, 41)	34*** (28, 39)	34 (29, 41)	33 (28, 41)
Median CD4 count, cells/μL (IQR)	291 (151, 438)	284 (152, 431)	286 (158, 432)	313 (170, 492)	244 (96, 445)	254 (122, 445)
WHO Stage 3 or 4, %	19.9	20.1	21.3	20.3	28.0	23.8
TB in past 6m, %	2.1	2.1	2.2	3.1*	2.4	3.1
Median Time to ART, days (IQR)	32 (14, 227)	42*** (14, 285)	41 (15, 228)	56*** (15, 455)	42 (14, 190)	44 (14, 191)
Single, (%)	10.8	11.1	13.3	13.4	12.5	24.1***
College/University Education, %	4.3	5.3*	5.1	4.6	7.4	11.7***
Disclosed HIV Status, %	losed HIV Status, % 97.7 97		97.7	98.1	98.0	96.0
Lusaka Province, %	39.4	50.5***	52.4***	68.2***	65.9***	57.1***
Proportion of Visits at Clinic Scheduled at 30d, median (IQR)	0.40 (0.31, 0.52)	0.48*** (0.38, 0.55)	0.46*** (0.38, 0.57)	0.53*** (0.39, 0.57)	0.53*** (0.38, 0.65)	0.43*** (0.31, 0.57)
Average Daily Visits at Clinic, median (IQR)	64 (41, 111)	76** (41, 123)	64 (41, 111)	55*** (49,108)	64 (50, 123)	55* (49, 111)


*p<0.1, **p<0.05, ***p<0.01 in adjusted analysis for predictors as compared to Group 1

Patient Characteristics by Group, n=38,879

	Group 1 (28.9%)	Group 2 (22.0%)	Group 3 (21.9%)	Group 4 (8.5%)	Group 5 (8.5%)	Group 6 (10.1%)
Male Sex, %	36.2	35.9	37.3	34.8	35.9	41.6
Median Age, years (IQR)	36 (30, 43)	35*** (29, 41)	34*** (29, 41)	34*** (28, 39)	34 (29, 41)	33 (28, 41)
Median CD4 count, cells/μL (IQR)	291 (151, 438)	284 (152, 431)	286 (158, 432)	313 (170, 492)	244 (96, 445)	254 (122, 445)
WHO Stage 3 or 4, %	19.9	20.1	21.3	20.3	28.0	23.8
TB in past 6m, %	2.1	2.1	2.2	3.1*	2.4	3.1
Median Time to ART, days (IQR)	32 (14, 227)	42*** (14, 285)	41 (15, 228)	56*** (15, 455)	42 (14, 190)	44 (14, 191)
Single, (%)	10.8	11.1	13.3	13.4	12.5	24.1***
College/University Education, %	4.3	5.3*	5.1	4.6	7.4	11.7***
Disclosed HIV Status, %	97.7	97.0**	97.7	98.1	98.0	96.0
Lusaka Province, %	39.4	50.5***	52.4***	68.2***	65.9***	57.1***
Proportion of Visits at Clinic Scheduled at 30d, median (IQR)	0.40 (0.31, 0.52)	0.48*** (0.38, 0.55)	0.46*** (0.38, 0.57)	0.53*** (0.39, 0.57)	0.53*** (0.38, 0.65)	0.43*** (0.31, 0.57)
Average Daily Visits at Clinic, median (IQR)	64 (41, 111)	76** (41, 123)	64 (41, 111)	55*** (49,108)	64 (50, 123)	55* (49, 111)

*p<0.1, **p<0.05, ***p<0.01 in adjusted analysis for predictors as compared to Group 1

Cumulative Incidence of Mortality by Trajectory Group

Cumulative Incidence of Mortality by Trajectory Group

	Cumulative Incidence of Mortality							
	<u>360 days</u>		<u>54</u>	0 days	<u>720 days</u>			
	%	% 95% CI		95% CI	%	95% CI		
Trajectory Group								
Group 1	1.0	0.4 – 1.9	2.1	0.7 – 3.9	2.2	0.8 - 4.0		
Group 2	1.1	0.2 – 2.2	1.1	0.2 – 2.2	1.5	0.4 – 2.7		
Group 3	0.6	0.3 – 1.0	2.6	0.9 - 4.7	5.7	2.2 – 10.5		
Group 4	3.5	0.7 – 7.1	6.0	1.8 – 11.6	6.0	1.8 – 11.6		
Group 5	4.3	2.2 - 6.8	14.1	7.4 – 22.6	17.4	9.1 – 28.4		
Group 6	4.4	0.8 - 8.4	12.3	6.0 - 19.8	22.4	13.4 – 34.6		

Mortality Risk by Trajectory Group - Poisson Regression

	Unadjusted IRR		p-value	A	Adjusted IRR		p-value	
Trajectory Group								
Group 1		REF		-		REF		-
Group 2		0.73		0.61		0.75		0.66
Group 3		1.9		0.25		1.7		0.39
Group 4		2.7		0.084		3.1		0.048
Group 5		6.0		<0.001		6.6		<0.001
Group 6		6.2		<0.001		5.7		0.001
Male Sex		-		-		1.17		0.59
Age, per 10 year increase		-		-		1.44		<0.001
Enrollment CD4 count, per 100						0 69		0.001
cells/µL increase		-		-		0.68		0.001
WHO Stage 3 or 4		-		-		0.94		0.86
TB in past 6m		-		-		0.49		0.27
Time to ART, per 90 day increase		-		-		1.03		0.40
Single		-		-		0.73		0.52
College/University Education		-		-		0.89		0.86
Disclosed HIV Status		-		-		0.67		0.56
Lusaka Province		-		-		0.72		0.34
Proportion of Visits at Clinic		_				0.98		0.81
Scheduled at 30d, per 10% increase		-		-		0.90		0.01
Average Daily Visits at Clinic, per 25		_		_		0.97		0.74
visit increase		-		-		0.97		0.74

Limitations

- Unable to assess viral suppression
 - MPR and LTFU are imperfect proxies for virologic outcomes
- Limitations of primary data source
 - Potential for outcome misclassification
- Causal inference may be limited with latent class methodologies

CONCLUSION

Conclusions

- We identified six trajectory groups among new ART starters
 - 1. Consistently high MPR and retention (28.9%)
 - 2. Suboptimal adherence early with late recovery/consistent retention (22.0%)
 - 3. Gradually decreasing MPR and retention (21.9%)
 - 4. Early nonadherence/LTFU with late recovery (8.5%)
 - 5. Early nonadherence/LTFU without recovery (8.5%)
 - 6. Late nonadherence/LTFU without recovery (10.1%)
 - Few strong baseline characteristics predictive of trajectory group membership
- Trajectory group strongly associated with risk of mortality

Implications

- Characterizing heterogeneity in longitudinal retention trajectories gives us a richer understanding of retention and patient behavior
- Different retention behaviors are associated with substantially different risk of mortality
- Urgent need to better understand baseline and longitudinal drivers of these engagement behaviors
 - Patients may have baseline behavioral phenotypes, but longitudinal events may also be key drivers
- Improved understanding of drivers of this heterogeneity in patient behaviors could be used to effectively and efficiently target interventions.
 - Patients with different engagement patterns may require different types of interventions

Thank you!

<u>UCSF</u>

- Elvin Geng
- Monika Roy
- Nancy Czaicki (in memorium)

UC Berkeley

Nancy Padian

Georgetown University

Charles Holmes

Stellenbosch University

Ingrid Eshun-Wilson

Johns Hopkins University

Sheree Schwartz

<u>CIDRZ</u>

- Izukanji Sikazwe
- Carolyn Bolton-Moore
- Thea Savory
- Mwanza wa Mwanza
- Kombatende Sikombe
- Jake Pry
- Sandra Simbeza
- Njekwa Mukamba
- Anjali Sharma
- Zambian Ministry of Health
- Bill and Melinda Gates Foundation