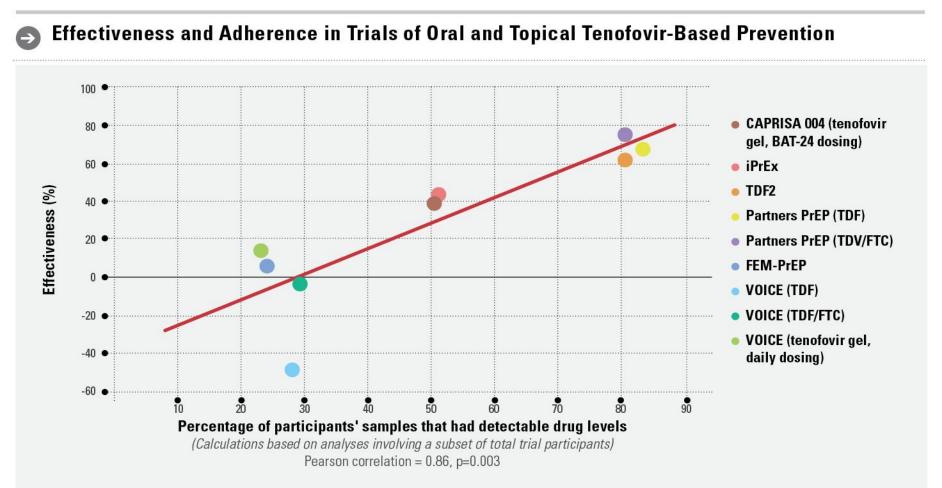

Biomedical HIV Prevention: Adherence Across Diverse Contexts and Cultures

Kenneth H. Mayer, M.D. Fenway Health/Beth Israel Deaconess Medical Center Harvard Medical School and T.C. Chan School of Public Health June 30th, 2015


Disclosures

- Unrestricted educational and research grants from Gilead Sciences
- Unrestricted research grants from Bristol-Myers-Squibb, Merck, and Alere, Inc.

Mayer et, et al. Curr Opinion HIVAIDS, 2015, modified from Abdool Karim et al, AVAC Report, 2014

PrEP works, but adherence is key

Trials of oral and topical tenofovir-based PrEP show that these strategies reduce risk of HIV infection if they are used correctly and consistently. Higher adherence is directly linked to greater levels of protection.

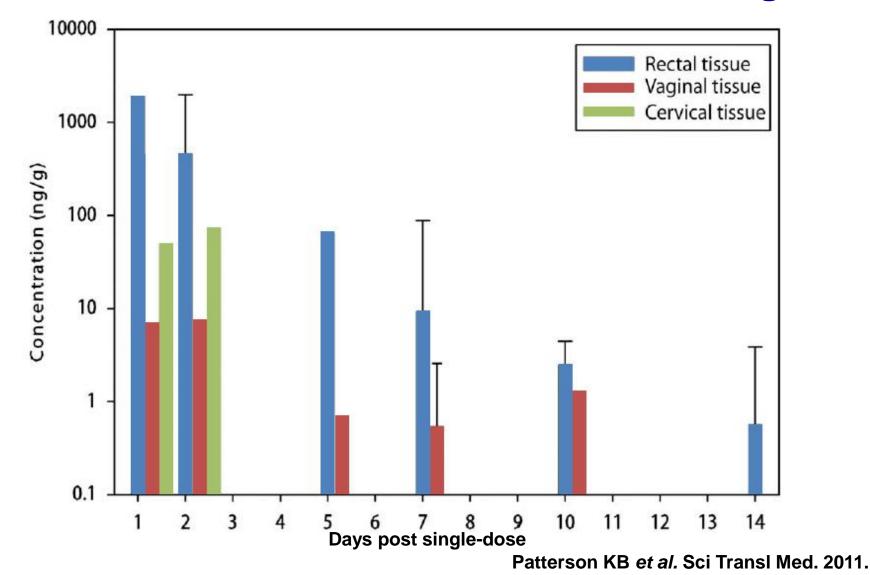
Source: Salim S. Abdool Karim, CAPRISA

AVAC Report 2013: Research & Reality www.avac.org/report2013

Influences on PrEP Adherence and Protection

- Trial (lots of stated negatives) vs. real world
- Self-perception of risk
- Medical trust/mistrust
- Biology ("forgiveness" when missing doses)
- Support for adherence
- Integrating behavioral health with PrEP
- Modality (Next Gen PreP)

(Auerbach, Marrazzo, VanDamme, Van der Straten, Stadler, Tolley, Hendrix, Abdool Karim, Saethre, Corneli)


PrEP is well-tolerated, discontinuations rare because of AEs

Study name	Subgroup within study	<u>Comparison</u>		Statis	tics for e	each study	,		Risk	ratio and	95% CI		
			Risk ratio	Lower limit	Upper limit	Z-Value	p-Value						
BKK TDF Study	Men and Women	daily PrEP vs. placebo	0.979	0.797	1.203	-0.202	0.840			•			
CDC Safety Study	MSM	daily PrEP vs. placebo	1.357	0.890	2.069	1.420	0.155				-		
FEMPrEP	Women	daily PrEP vs. placebo	1.446	0.855	2.445	1.376	0.169			+_■	-		
IAVI Kenya Study	MSM and FSW	multiple PrEP dosing	4.592	0.257	81.944	1.037	0.300		_				
IAVI Uganda Study	Men and Women	multiple PrEP	0.170	0.007	4.025	-1.097	0.272	K					
Ipergay	MSM	intermittent PrEP	1.226	0.622	2.420	0.589	0.556			_ 	-		
iPrEx	MSM and TG	daily PrEP vs. placebo	0.919	0.747	1.129	-0.806	0.420			-			
Partners PrEP-Mair	n Men and Women	daily PrEP vs. placebo	1.077	0.954	1.215	1.194	0.233						
Project PrEPare	MSM	daily PrEP vs. placebo	2.850	0.324	25.069	0.944	0.345		-			-	
TDF2	Men and Women	daily PrEP vs. placebo	0.652	0.370	1.150	-1.477	0.140						
VOICE	Women- All PrEP	daily PrEP vs. placebo	0.925	0.746	1.147	-0.713	0.476			-			
			1.016	0.916	1.127	0.305	0.760			•			
								0.01	0.1	1	10	10	0
								Favou	rs PrEl	D	Favou	ırs Pla	icebo

- No difference in proportion of participants reporting any adverse event (RR=1.01, 95% CI: 0.99-1.03, p=0.27)or any grade 3 or 4 adverse event comparing PrEP to placebo study arms.
- Several studies noted subclinical declines in renal functioning and bone mineral density among PrEP users.

"Forgiveness"

Tenofovir Concentration: Rectal>Cervical>Vaginal

PrEP: Risk, Compensation, Adherence, Coverage

- Risk compensation? Not often relevant
 - Possible, not often seen in studies to date
 - But what if condoms are never used?
- Match counseling messages and →→ Requires
 prevention intervention to risk discussion with
 - clinician

Indirect adherence measures

- Self-report
- Pill count
- Medication possession ratio
 - ~90% adherence in PrEP trials by these measures
 - But trial efficacy 0% to 75%...

"Frankly, darling, I think your doctor is a little obsessive about this compliance thing."

© 2004 Diabetes Health

TFV plasma concentrations & adherence interpretation

- Concentration determines how far back yes/no applies
- Extensive knowledge of TFV PK represents "PK validated".

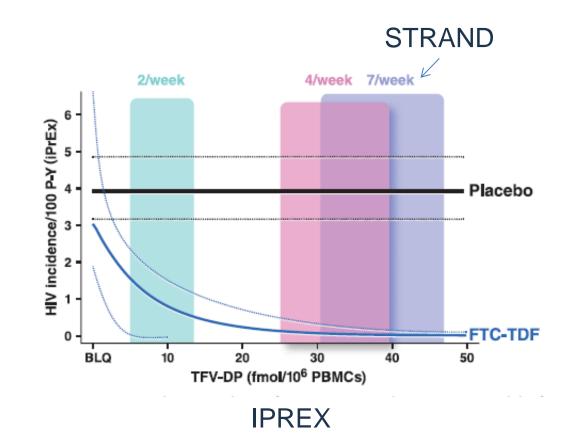
TFV plasma Concentration	Adherence Interpretation
≥ 40 ng/mL	Dose within 24 hours
< 40 and ≥ 10 ng/mL	Dose ~48 hours ago
< 10 and ≥ 0.3 ng/mL	Dose ~ 7 days ago
BLQ	No dose within 7 days

Donnell. JAIDS 2014; PMID:24784763. Hendrix. CROI 2014 (HPTN 066).

Pros and Cons of dichotomous

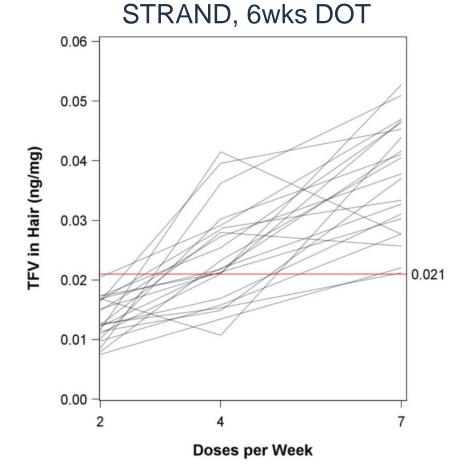
Pros

- Confirms drug ingestion.
- Easy to collect.
- Potential for point of care testing.
- Plasma validated.

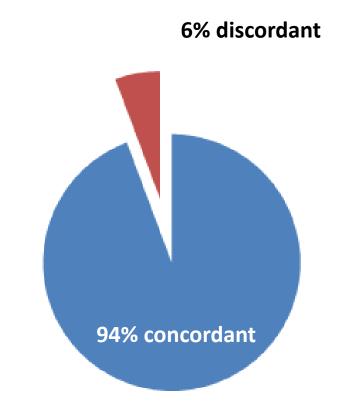

Cons

- Adherence information limited to most recent dose.
- White coat dosing.

Long half-life examples - PBMC


- Tenofovirdiphosphate (TFV-DP) in PBMC (~3 day t-1/2)
- Clinically validated
 iPrEx (MSM)
- PK validated
 HPTN 066, STRAND

Anderson, Sci Transl Med 2012 (PMID 22972843); Liu, PLoS ONE 2014 (PMC3885443). Hendrix, CROI 2014.


Long half-life examples - hair

- TFV in hair (~ 21 day t-1/2??).
- PK validated in dark-haired people in STRAND.

FTC-TP is also in RBC and DBS

- FTC-TP in DBS has similar t-1/2 to TFV/FTC in plasma.
- FTC-TP detection in DBS concordant with detection of TFV/FTC in paired plasma.
- TFV-DP informs cumulative dosing; FTC-TP detection informs dosing in last 48 hrs.

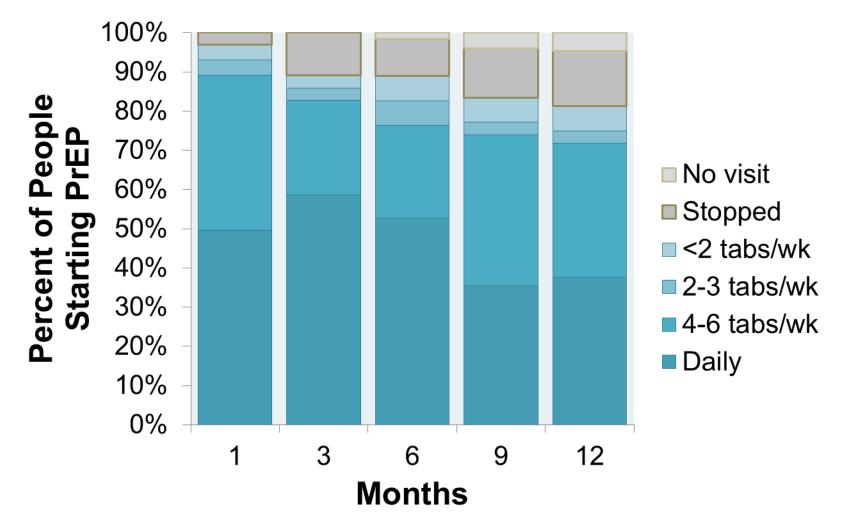
N=515 paired plasma:DBS

Pros and Cons of long half life moieties

Marker	Pro	Con
PBMC TFV-DP	 Clinical and PK validated Adherence over 1-2 weeks Protective threshold identified 	 NOT easy to collect/process Variable cell processing issues Cold chain needed.
Hair TFV	Room temp storage, shippingAdherence over long-term (?)	Baldness, acceptancePK (?) and Variability (?)
DBS TFV-DP	 Easy to collect and process Adherence over ~8 weeks Protective threshold identified FTC-TP informs recent dosing 	 HCT abnormalities outside 35% to 50%? Cold-chain needed.

CORRELATES OF PREP PROTECTION (GRANT ET AL, LANCET ID, 2014)

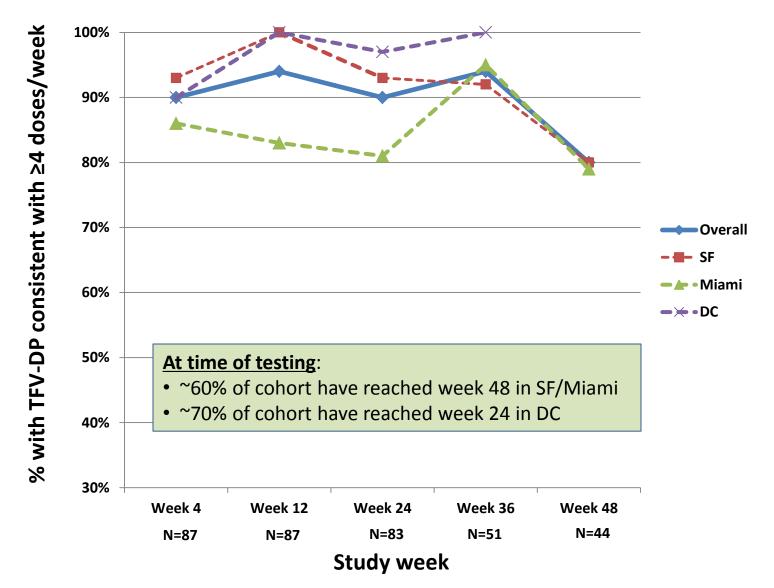
TABLE 2


	BLQ	LLOQ to <350 fmol per punch	350-699 fmol per punch	700–1249 fmol per punch	≥1250 fmol per punch
Estimated dose (tablets per week)	None	<2	2-3	4–6	7
Follow-up (% of visits)	25%	26%	12%	21%	12%
HIV infections (n)	18	9	1	0	0
Person-years per infection	384	399	179	316	181
HIV incidence (95% CI)	4·70 (2·99–7·76)	2-25 (1-19-4-79)	0.56 (0.00-2.50)	0.00 (0.00-0.61)	0.00 (0.00-1.06)
HR vs previous placebo (95% CI)*	1.55 (0.88-2.56)	0.69 (0.32-1.32)	0-19 (0-01-0-88)	0.00 (0.00-0.25)	0.00 (0.00-0.50)
HR vs concurrent off-PrEP (95% CI)†	1.25 (0.60-2.64)	0.56 (0.23-1.31)	0.16 (0.01-0.79)	0.00 (0.00-0.21)	0.00 (0.00-0.43)

HR=hazard ratio. PrEP=pre-exposure prophylaxis. BLQ=below limit of quantification. LLOQ=lower limit of quantification. *Adjusted for study site. †Adjusted for study site, age, number of sexual partners, non-condom receptive anal intercourse, and syphilis. Drug concentration measurements were not available for 5% of visits.

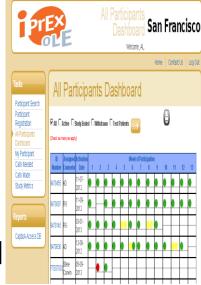
Table 2: Effect of tenofovir diphosphate in dried blood spots on HIV infection

iPrEx Open Label PrEP in San Francisco:


81% still on PrEP at 12 months,¹ 92% on PrEP use 4+ tablets per week.²

- 1. Grant Lancet ID 2014 14(9):820-9;
- 2. Estimated from dried blood spots in iPrEx OLE in San Francisco.

Grant CROI Abstract 25 Seattle 2015.


Proportion with estimated ≥4 doses/week in longitudinal cohort (N=90), overall and by site SF Demo Project, Al Liu et al

New technologies and PrEP adherence

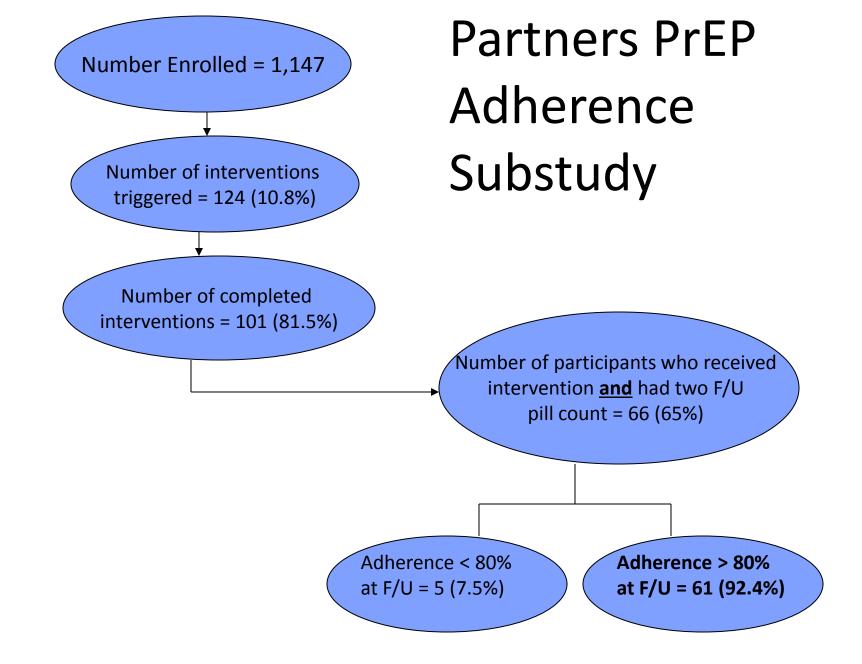
- † treatment adherence with text messaging (Lester, Lancet, 2010)
- Wisepill: used in Life-Steps HAART adherence intervention modified for PrEP, including daily SMS with pts (Mayer/Safren)
- Feedback on drug levels been studied as adjunct to counseling (Landovitz)
- SexPro App including diary features and adherence support, tested in NYC, SF, Lima and Rio (Buchbinder)

COGNITIVE BEHAVIORAL THERAPY (CBT) PREP ADHERENCE INTERVENTION

(SAFREN/MAYER, NIMH R34)

- 4 weekly hour-long sessions
- Booster sessions at 2 and 3 months
- Based on Life-Steps*
- Nurse delivered
- Incorporates:
 - Problem Solving
 - Motivational Interviewing
 - Mindfulness and Relaxation

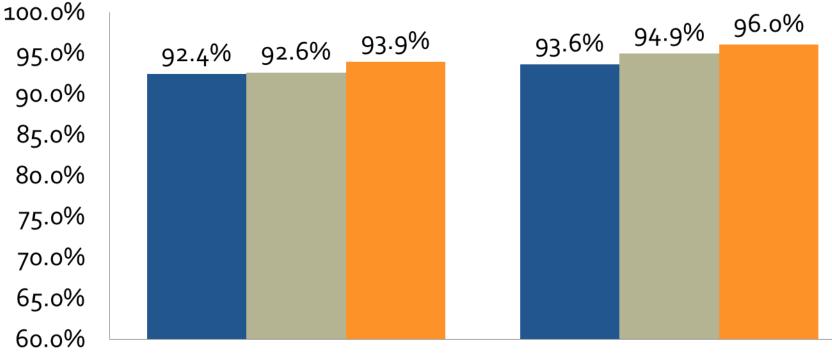
84% had TFV levels c/w daily use at 6 months


*Safren SA, et al. Two strategies to increase adherence to HIV antiretroviral medication: life-steps and medication monitoring. Behav Res Ther. 2001 Oct;39(10):1151-62.

Psaros C, et al. An intervention to support HIV preexposure prophylaxis adherence in HIVserodiscordant couples in Uganda. J Acquir Immune Defic Syndr. 2014 Aug 15;66(5):522-9.

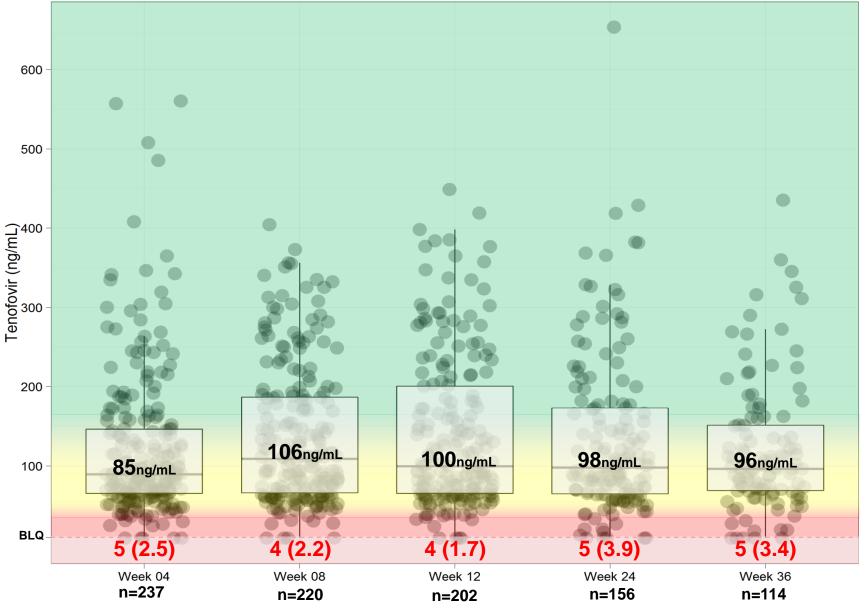
Partners PrEP: Ancillary Adherence Study

(Haberer et al)


- Intervention based on principles of Cognitive Behavioral Therapy (CBT) and Motivational Interviewing (MI) targeted to HIV-negative participants with low (<80%) unannounced pill count adherence
 - To improve adherence through the duration of the study
 - To examine process of intervention delivery and predictors of intervention success
- Intervention in progress based on the work of Safren et al on adherence to ART (Safren et al., 1997; 2001; 2007)
- Modular / checklist format:
 - Standardized provision of information while still tailoring counseling messages to individual needs
 - Delivery by a variety of study staff members with various levels of training
 - Provides a reference for future counseling sessions

Preliminary DBS Adherence Data (06/15/15)

3M(n = 171) **6**M(n = 136) **1**2M(n = 49)



4+ pills/week (≥700 fmol)

Recent dose (past 48-72 hrs)

R01AA022067 (Golub, PI)

Real Time Plasma TFV Levels

*BLQ – 30: No drug/up to a single dose in the past 48 hours.

60 – 80: Trough concentration at steady state with daily dosing for at least 48 hours.

200 - 300: Peak concentration at steady state with daily dosing for at least 48 hours.

Landovitz et al

How To Improve Chemoprophylaxis Effectiveness?

Vaginal & Rectal Microbicides

Intravaginal rings

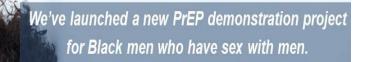
Injectables: ARVs and mAbs

Impact of age on adherence

• iPrEX sub-study (Liu, JAIDS, 2014)

TABLE 4. Proportion and Factors Associated With Sometimes and Always (vs. Never) Drug Detection Over Time*							
Characteristics	Never Detected, %	Sometimes Detected, %	Always Detected, %	OR (Some vs. Never) (95% CI)	Р	OR (Always vs. Never) (95% CI)	Р
Age							
≤20	58	29	13	Ref		Ref	
21–25	28	45	27	4.04 (1.66 to 9.85)	0.002	6.32 (2.09 to 19.09)	0.001
26–30	32	44	24	3.42 (1.21 to 9.67)	0.02	4.74 (1.26 to 17.76)	0.021
>30	16	29	55	5.13 (1.87 to 14.07)	0.001	33.24 (9.91 to 111.45)	< 0.001

Partners PrEP sub-study

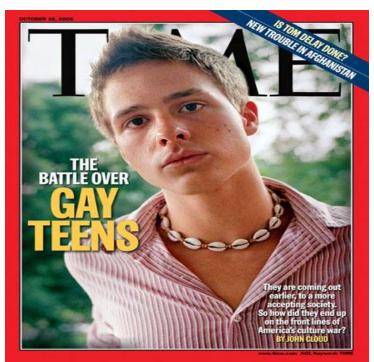

– AOR 1.7 (1.3–2.1, p=0.01) for <80% MEMS adherence (Haberer, PLoS Med, 2013)

Tailoring PrEP for Key Populations

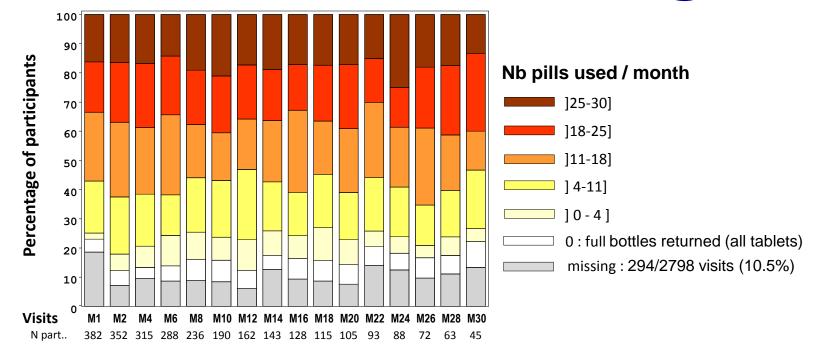
HPTN 073 Black MSM

Client-centered care coordination (C4)

(Wheeler/Fields)

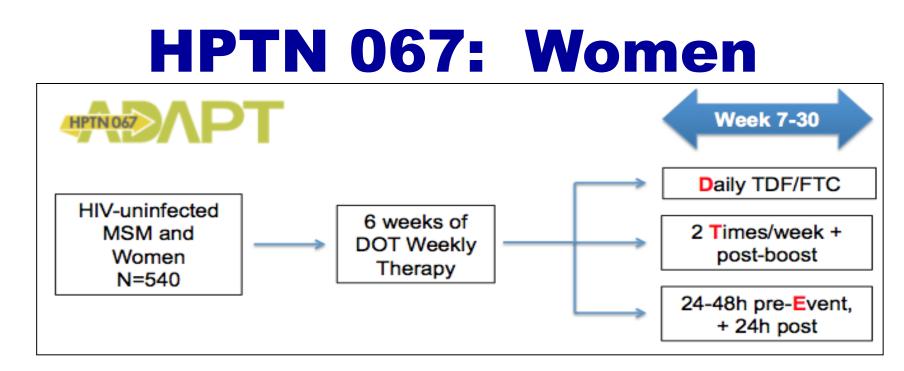

Participate in the live Twitter chat on #HPTN073 Wednesday, August 14 #PrEPChat at 10 am PT / 1 pm ET With our guests: @JonPaulLucas and @cchauncey Be sure to follow @HIVptn

Join the HPTN 073 Webinar: *"Introducing HPTN 073: A BMSM PrEP Demonstration Study"* at **11 am PT / 2 pm ET** by registering at http://bit.ly/073Webinar


Find out more about HPTN 073 at

ATN 110/113

- YMSM 15-22 y.o.
- PreP + Individual vs. group EBI behavioral intervention (Hosek et al)



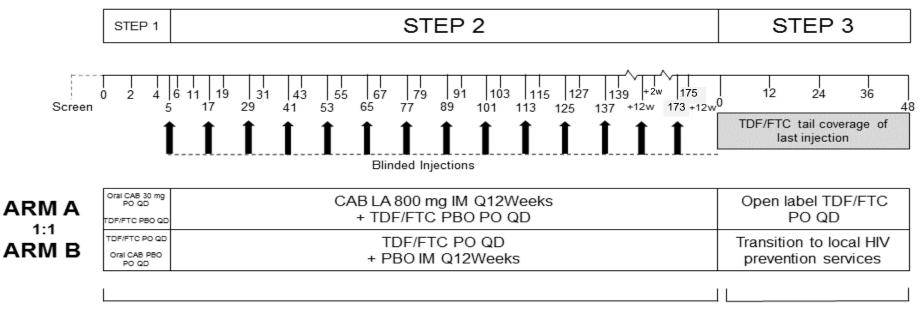
iPERGAY TDF/FTC Usage

- Median number of pills/month (IQR): 16 pills (10-23) in the placebo arm and 16 pills (12-24) in the TDF/FTC arm (p=0.84)
- 48 participants (12%) received PEP
 25 (13%) in the TDF/FTC arm and 23 (11%) in the placebo arm (p=0.73)

Molina JM, CROI 2015, Abstract 23LB

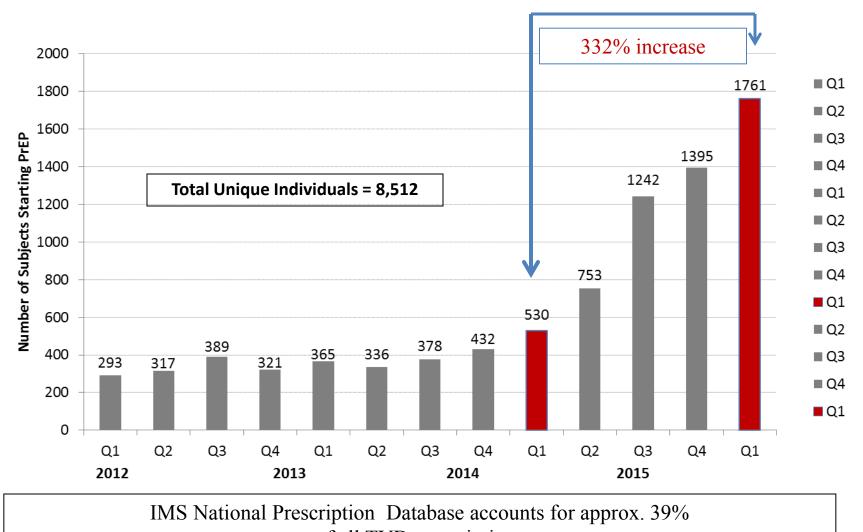
Drug detected in Plasma							
Dosing Regimen	Week 10	Week 30	Coverage				
Daily	93%	79%	75%				
Time-driven	87%	63%	56%				
Event-driven	78%	53%	52%				

Low rates of adverse events, no difference in rates of (rare) seroconversion


Bekker LG. CROI 2015, Abstract 978LB.

HPTN 083 Study schema

4500 HIV-uninfected MSM/TGW in Asia, North & South America will be randomized 1:1 to:


- Step 1: Oral TDF/FTC or Cabotegravir 30 mg daily x 5 weeks (DB)
- Step 2: Oral TDF/FTC daily or IM Cabotegravir 800 mg every 3 months (DB) Continues until required number of seroconversions reached (mean 2.5y)
- Step 3: Open label TDF/FTC daily to cover PK "tail"

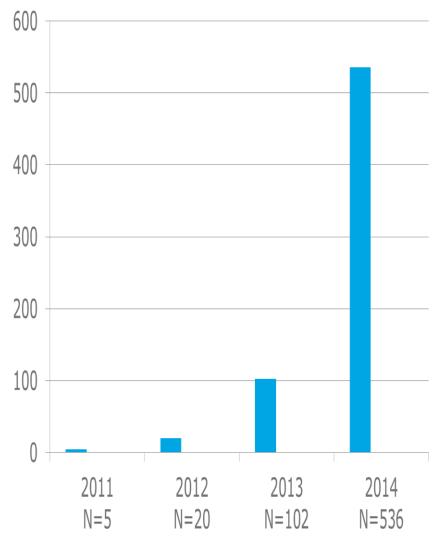
Post-trial access under discussion

Arm A participants will begin Step 3 approximately 12 weeks after final injection

New PrEP Starts per Quarter

of all TVD prescriptions

Bush, S. et al; IAPAC Prevention 2015; #74

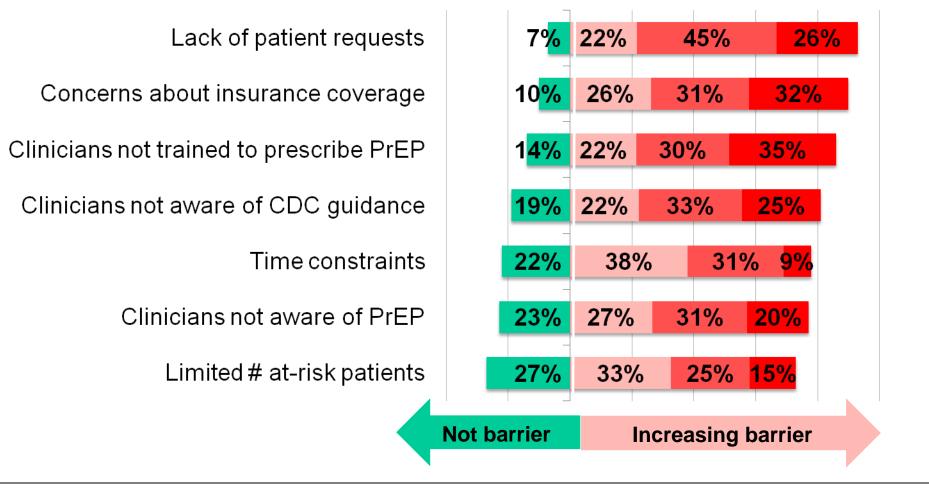

PrEP Eligibility and Use in SF

Group	People
HIV negative at substantial risk: MSM with 2+ non-condom anal sex (ncAI) partners ¹ MSM with 0 ncAI and an STI in the last year ² Female partners of HIV+ MSM ³ Trans women ⁴	12,589 2,325 653 522
TOTAL estimated PrEP eligibility	16,089
TOTAL reporting any PrEP in past year ⁵	5,059
Percent of eligible people using PrEP in the past year	31%

- 1. SF City Clinic 2014 survey x HIV negative MSM population of 50,000;
- 2. SF NHBS self report of STI among MSM with 0 ncAI in 2014 x HIV negative MSM population of 50,000;
- 3. SF NHBS MSM reporting female partners in 2014 x HIV positive MSM population of 14638.
- 4. IDU and ncRAI in est. 923 HIV negative trans women in SF, adapted from Wilson *BMCID* 2014 14:430.
- 5. SF NHBS 2014, data on file.

Grant CROI Abstract 25 Seattle 2015.

Fenway Health: PrEP Experience

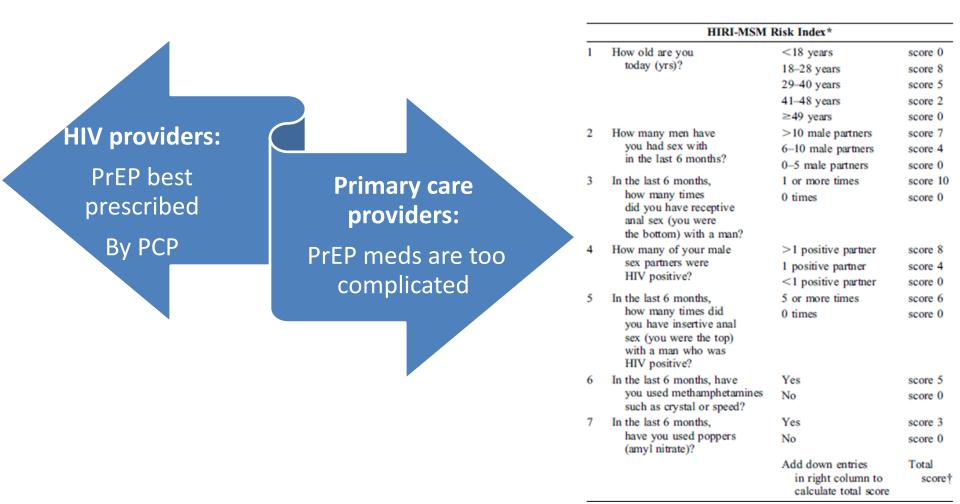

- 85.5% of initiators still on PrEP; Longest: 3.8 years
- 79.7% White; 8% Black; 12.3% Latino
- 95.1% identified as gay
- 158 zip codes
- "Gayborhood" <10%
- Private Ins: 80.7%; Medicare: 9%; Medicaid: 8.7%
- 25.9% who d/c'ed PrEP, initiated again
- More than 30 prescribers

Factors Associated with PrEP Use among US MSM Multivariable Model, Manhunt Survey, 1/14 (under review)

Characteristic	Multivariable OR (95% CI)
College graduate or above (vs. less than college education)	5.33 (1.25 to 22.7)
Ever diagnosed with an STI	2.74 (1.36 to 5.52)
Used PEP	16.0 (8.24 to 31.2)
Comfortable talking with provider about MSM sex	4.19 (1.51 to 11.6)

MSM in states that were more LGBT supportive were more likely to use PrEP, be out to their providers, and less likely to engage in condomless sex (Oldenburg et al, AIDS, in press, 2015)

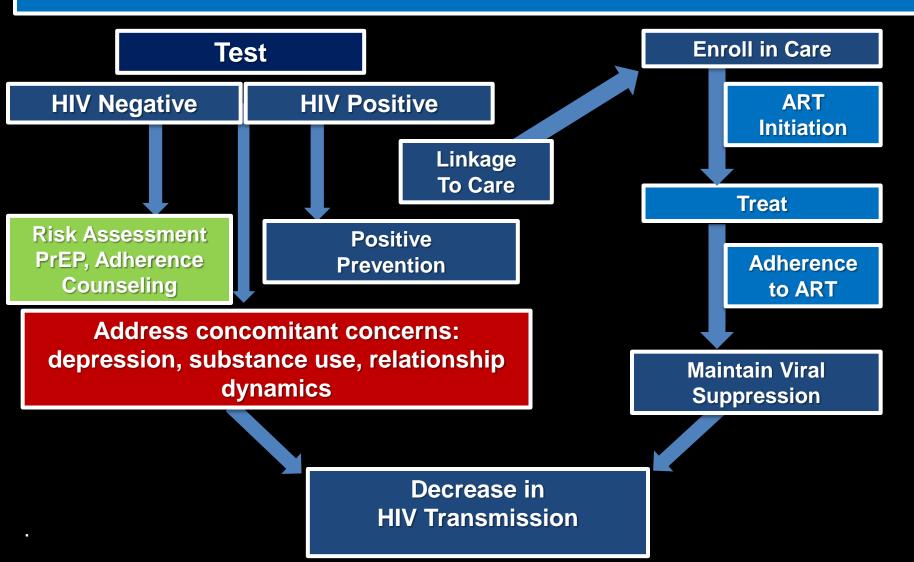
New England providers perceived numerous barriers to prescribing PrEP (Krakower, PLOS ONE, in press 2015)



Numbers represent percentage for each response category: not a barrier, minor barrier, moderate barrier, major barrier. Bars total to 100%

Purview paradox: contradictory beliefs about who should prescribe PrEP

(Krakower D, AIDS and Behavior, 2014; Smith D, JAIDS, 2014)



Conclusions

- Oral PrEP works, if used
- Adherence is the 1^o issue to ensure success
- New technologies to measure adherence are being developed
- New technologies to enhance adherence are also being developed
- New delivery systems for PrEP may obviate some challenges for PrEP (e.g. quarterly injections)
- Providers need to be engaged
- PrEP is a work in progress

Antiretrovirals alone are not sufficient

Interventions to Increase Testing

Salim and Quarraisha Abdool Karim **Rivet Amico** Peter Anderson Susan Buchbinder Marcy Gelman David Glidden Sarit Golub **Robert Grant** Craig Hendrix Jessica Haberer Sybil Hosek **Doug Krakower** Raphy Landovitz Albert Liu Sheena McCormack Jean-Michel Molina Ian McGowan Jean-Michel Molina Alex Rinehart Jim Rooney Steve Safren Rodney Vanderwarker Mitchell Warren

Many thanks

PROTECTING YOURSELF FROM HIV THROUGH PRE-EXPOSURE PROPHYLAXIS (PrEP):

What You Need to Know Conduct 200

FO THE FERWAY INSTITUTE

TFI Biomed, Behavioral, Epi and **Data Teams** Study Participants Grants from: NIAID, NIMH, NIDA, NIAAA, NICHD, HRSA, CDC, Gilead

