Difference in Self-Reported Adherence on Different Recall Intervals over Time between Males and Females in MACH14 Study

Yan Wang
Ph.D. Candidate
University of California, Los Angeles (UCLA)
Collaborators

Ira Wilson, Brown University
Glenn Wagner, RAND Corporation
Marc Rosen, Yale University
Jie Shen, UCLA
Robert Remien, Columbia University
Judith Erlen, University of Pittsburgh
Jane Simoni, University of Washington
Li Cai, UCLA
Honghu Liu, UCLA
Outline

- Background
- IRT model
- Results
- Discussion/Limitation
Background

- Item Response Theory (IRT) for Health Outcome
- MACH14 project
- Self-Reported Adherence
Item Response Theory (IRT)

- IRT was first proposed in psychometrics
 - Widely used in education
 - Relate latent trait(s) to the probability of responses

- IRT-based models have become increasingly popular in
 - Health outcomes
 - Quality-of-life research
 - Clinical research

- Item residuals when using the same instruments over time
MACH14 study----a Multi-site Adherence Collaboration in HIV among 14 universities/institutes in the U.S.
Self-reported adherence

- Self-reported adherence with different recall intervals
 - One day
 - Two days
 - Three days

- Ordinal response created at baseline and exit:
 - 0 – with less than 50%
 - 1 – 50% - 85%
 - 2 - >85% - perfect adherence
Method

• Two-tier Item Factor Analysis Model
 • Missing observations
 • Clustering observations
 • By gender
Two-tier model for longitudinal data
Additional problems

- Missing is coded as “-9”
- Clustered observations within each study
- Compare the difference between genders
Assumptions of the model

- The latent variables are normally distributed.
- Primary latent variables can be correlated.
- The components of specific dimensions (adherence at different recall intervals) are mutually orthogonal.
- The primary dimension and the specific dimensions are orthogonal.
- The item responses are independent after the influence of latent variables are removed.
Results

• Latent trait estimation
• flexMIRT
Some basic characteristics of the sample

Male
- N = 1108
- Mean Age = 41.3 ± 8.3

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean ± Std</th>
<th>Mean ± Std</th>
<th>N</th>
<th>Mean ± Std</th>
<th>Mean ± Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS item 1</td>
<td>1067</td>
<td>0.93 ± 0.23</td>
<td>1.84 ± 0.5</td>
<td>478</td>
<td>0.89 ± 0.27</td>
<td>1.75 ± 0.59</td>
</tr>
<tr>
<td>BS item 2</td>
<td>1003</td>
<td>0.93 ± 0.23</td>
<td>1.83 ± 0.5</td>
<td>426</td>
<td>0.9 ± 0.27</td>
<td>1.76 ± 0.59</td>
</tr>
<tr>
<td>BS item 3</td>
<td>998</td>
<td>0.92 ± 0.24</td>
<td>1.82 ± 0.52</td>
<td>424</td>
<td>0.89 ± 0.28</td>
<td>1.76 ± 0.59</td>
</tr>
<tr>
<td>Ex item 1</td>
<td>1052</td>
<td>0.91 ± 0.26</td>
<td>1.8 ± 0.56</td>
<td>470</td>
<td>0.86 ± 0.31</td>
<td>1.68 ± 0.67</td>
</tr>
<tr>
<td>Ex item 2</td>
<td>986</td>
<td>0.91 ± 0.26</td>
<td>1.79 ± 0.56</td>
<td>421</td>
<td>0.89 ± 0.29</td>
<td>1.74 ± 0.62</td>
</tr>
<tr>
<td>Ex item 3</td>
<td>987</td>
<td>0.91 ± 0.26</td>
<td>1.81 ± 0.54</td>
<td>422</td>
<td>0.89 ± 0.28</td>
<td>1.76 ± 0.6</td>
</tr>
</tbody>
</table>

Female
- N = 484
- Mean Age = 41.2 ± 7.7
Overall estimation

<table>
<thead>
<tr>
<th>Item</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
<th>c1</th>
<th>c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.28</td>
<td>0</td>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>10.57</td>
<td>8.02</td>
</tr>
<tr>
<td>2</td>
<td>30.35</td>
<td>0</td>
<td>0</td>
<td>12.28</td>
<td>0</td>
<td>45.49</td>
<td>35.82</td>
</tr>
<tr>
<td>3</td>
<td>7.62</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.99</td>
<td>12.01</td>
<td>9.45</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6.28</td>
<td>3.3</td>
<td>0</td>
<td>0</td>
<td>10.57</td>
<td>8.02</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>30.35</td>
<td>0</td>
<td>12.28</td>
<td>0</td>
<td>45.49</td>
<td>35.82</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>7.62</td>
<td>0</td>
<td>0</td>
<td>2.99</td>
<td>12.01</td>
<td>9.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mu1</th>
<th>mu2</th>
<th>mu3</th>
<th>mu4</th>
<th>mu5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theta1</th>
<th>Theta2</th>
<th>Theta3</th>
<th>Theta4</th>
<th>Theta5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78</td>
<td>1.11</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph](image)

June 30, 2015

UCLA
Clustered within study

Latent Site Estimation by Gender

M=Male F=Female
By gender estimation – latent adherence

Graded Items for Group 1: M \[\theta_1 = 0, \theta_2 = 1.07, Var(\theta_2) = 1.7, COV(\theta_1, \theta_2) \approx 0 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>a 1</th>
<th>a 2</th>
<th>a 3</th>
<th>a 4</th>
<th>a 5</th>
<th>c 1</th>
<th>c 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>5.36</td>
<td>3.73</td>
</tr>
<tr>
<td>2</td>
<td>7.09</td>
<td>0</td>
<td>7.08</td>
<td>0</td>
<td>9.01</td>
<td>5.88</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32.23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>38.7</td>
<td>42.66</td>
<td>36.04</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>5.36</td>
<td>3.73</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>7.09</td>
<td>7.08</td>
<td>0</td>
<td>9.01</td>
<td>5.88</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>32.23</td>
<td>0</td>
<td>0</td>
<td>38.7</td>
<td>42.66</td>
<td>36.04</td>
</tr>
</tbody>
</table>

Graded Items for Group 2: F \[\theta_1 = 0, \theta_2 = 1, Var(\theta_2) = 1.95, COV(\theta_1, \theta_2) \approx 0 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>a 1</th>
<th>a 2</th>
<th>a 3</th>
<th>a 4</th>
<th>a 5</th>
<th>c 1</th>
<th>c 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.12</td>
<td>0</td>
<td>43.24</td>
<td>0</td>
<td>0</td>
<td>44.45</td>
<td>23.33</td>
</tr>
<tr>
<td>2</td>
<td>28.86</td>
<td>0</td>
<td>0</td>
<td>41.97</td>
<td>0</td>
<td>42.36</td>
<td>23.03</td>
</tr>
<tr>
<td>3</td>
<td>2.35</td>
<td>0</td>
<td>0</td>
<td>4.09</td>
<td>5.09</td>
<td>5.09</td>
<td>3.25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>32.12</td>
<td>43.24</td>
<td>0</td>
<td>0</td>
<td>44.45</td>
<td>23.33</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>28.86</td>
<td>0</td>
<td>41.97</td>
<td>0</td>
<td>42.36</td>
<td>23.03</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2.35</td>
<td>0</td>
<td>0</td>
<td>4.09</td>
<td>5.09</td>
<td>3.25</td>
</tr>
</tbody>
</table>
Conclusion

- The **difficulty** on report adherence based on different recall intervals between male and female
 - Male – 3 days recall
 - Female – 1 or 2 days recall

- Males have advantages in short-term memory
Discussion and Limitation

- Discussion
- Limitation
- Future work
Compare with traditional analysis
Discussion

- The computation speed
 - With and without cluster
 - Different OS
- Assumptions
Limitation

- Missing is not at random
- No inference about the other covariates
 - Age
 - Substance abuse
 - Ethnicity
Possible Future Work

- MEMS data verification
- Continuous outcome vs Ordinal response
- More than two longitudinal time points
- Multiple imputation techniques
- Violation of the assumptions
Key references

Acknowledgements

We would like to express our great appreciation to MACH14 investigators for their contribution to the rich data set.