Cost-Effectiveness of PrEP

Bruce R. Schackman, PhD
Department of Public Health
Weill Cornell Medical College

TasP and PrEP Evidence Summit 2012
London
June 12, 2012
Disclosures

• Member of the HPTN 069 NEXT-PrEP (Novel Exploration of Therapeutics for PrEP) clinical trial team

• No financial disclosures
Agenda

• Cost-effectiveness overview
• PrEP cost-effectiveness model considerations
• Cost-effectiveness of PrEP in United States and South Africa: current findings
• Issues and future research needs
Cost-effective ≠ Cost saving
Cost-effectiveness is about value for money

- Cost-effectiveness analysis is about comparative assessment of worth
- Very, very few health interventions are cost-saving
- Cost-effectiveness is evaluated from the societal perspective
- Cost-effectiveness analysis does not directly address the cost impact on specific budgets
Only one of many measures of the appropriateness of health interventions

- Clinical duty
- Ethical duty
- Equity / justice
- Patient preference
- Economic efficiency
Choosing a cost-effectiveness threshold

• $100,000/QALY now frequently used in the US
• 1-3x GDP/capita frequently used in middle and low-income countries
 – $8,100/DALY-$24,300/DALY for South Africa
 – Although benchmark is $/DALY, also has been applied to $/LY
Discounting: valuing appropriately over time

• We prefer receiving benefits (money, health) now versus later
• Discounting reduces future streams of costs and effects to a common present value
• Spending on prevention now may not bear fruit for many years
• Treatments that save lives now can result in additional costs in the future
• Impact depends on when costs and benefits occur and the time horizon of the study
All models are wrong, some models are useful
Individual-level Model

Primary HIV Infection → Chronic HIV Infection

Chronic HIV Infection → Acute Clinical Event

Death → Chronic HIV Infection

Transmission Model

Susceptible → Infected

Infected → ART

Infected → Infected on PrEP

PrEP → Susceptible

PrEP → Infected on PrEP

Infected on PrEP → Infected

Infected → Death

ART → Susceptible
Individual-level model inputs

- Target population demographics
- HIV incidence (varies by age/risk group)
- Effectiveness of PrEP (efficacy, adherence)
- Disinhibition (reduces effectiveness of PrEP)
- Duration of PrEP (e.g. lifetime, 20-30 years)
- Risk of resistance
- HIV testing frequency with and without PrEP
- ART initiation with and without PrEP
Transmission model inputs

• Initial HIV prevalence
• Initial ART coverage and changes over time
• Initial coverage of other prevention programs (condom use) and changes over time
• Timing of PrEP roll-out into the population
Modeling the impact of HIV chemoprophylaxis strategies among men who have sex with men in the United States: HIV infections prevented and cost-effectiveness

Kamal Desaia, Stephanie L. Sansomb, Marta L. Ackersb, Scott R. Stewartc, H. Irene Halld, Dale J. Hub, Rachel Sandersd, Carol R. Scottonb, Sada Soorapathanb, Marie-Claude Boilya, Geoffrey P. Garnetta and Peter D. McElroyb

A. David Paltiel, Kenneth A. Freedberg, Callie A. Scott, Bruce R. Schackman, Elena Losina, Bingxia Wang, George R. Seage III, Caroline E. Sloan, Paul E. Sax, and Rochelle P. Walensky

\textit{Clinical Infectious Diseases} 2009; 48:806–15

The Cost-Effectiveness of Preexposure Prophylaxis for HIV Prevention in the United States in Men Who Have Sex With Men

Jessie L. Juusola, MS; Margaret L. Brandeau, PhD; Douglas K. Owens, MD, MS; and Eran Bendavid, MD, MS

Study model characteristics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Transmission</td>
<td>Individual-level</td>
<td>Transmission</td>
</tr>
<tr>
<td>Time horizon</td>
<td>5 years</td>
<td>lifetime</td>
<td>20 years</td>
</tr>
<tr>
<td>PrEP</td>
<td>tenofovir/emtricitabine</td>
<td>tenofovir/emtricitabine</td>
<td>tenofovir/emtricitabine</td>
</tr>
<tr>
<td>No PrEP</td>
<td>unclear</td>
<td>Annual HIV testing and ART initiation at CD4 <350</td>
<td>67% annual testing and ART initiation at CD4<350 or CD4<500</td>
</tr>
<tr>
<td>Base case HIV incidence</td>
<td>0.75%-1.85% (varies by age)</td>
<td>1.6%</td>
<td>0.8%, 2.3% high risk</td>
</tr>
</tbody>
</table>
Study model inputs for PrEP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectiveness</td>
<td>50%</td>
<td>50%</td>
<td>44%</td>
</tr>
<tr>
<td>Monthly medication cost</td>
<td>$943</td>
<td>$724</td>
<td>$776</td>
</tr>
<tr>
<td>Full use of meds?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Monitoring</td>
<td>quarterly</td>
<td>lab quarterly, MD semi-annually</td>
<td>every 2-3 months</td>
</tr>
<tr>
<td>Labs</td>
<td>“medical monitoring”</td>
<td>HIV, CBC, metabolic, chemistry, lipids</td>
<td>HIV, STI, creatinine, urea nitrogen</td>
</tr>
<tr>
<td>Resistance evaluated?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Cost-effectiveness of PrEP in US MSM: study findings

• Cost-effectiveness ratio is more attractive when PrEP is targeted to high-risk MSM:
 – < $100,000/QALY with high incidence (2-3%) vs. > $200,000/QALY with lower incidence (0.8%)
 – Mixed results for intermediate incidence (1-2%)
 – Ways to target: younger age, 5+ annual partners, not being tested for HIV annually

• Cost-effectiveness improves dramatically when effectiveness improves or cost of PrEP is lower

• Results less sensitive to resistance, toxicity
Cost of PrEP in US MSM

• High-risk MSM, average annual cost for a 20-year program (based on Juusola, 2012)
 – 100% coverage: $4,250 million cost, $500 million health care savings, $3,750 million net cost
 – 20% coverage: $850 million cost, $150 million health care savings, $700 million net cost
The Cost-effectiveness of Pre-Exposure Prophylaxis for HIV Infection in South African Women

Rochelle P. Walensky,1,2,3,5 Ji-Eun Park,2 Robin Wood,5,7 Kenneth A. Freedberg,1,2,5,8,11 Callie A. Scott,2 Linda-Gail Bekker,6,7 Elena Losina,4,5,12 Kenneth H. Mayer,13,14,16 George R. Seage III,9,16 and A. David Paltiel16

Clinical Infectious Diseases 2012;54(10):1504–13

Evaluating the Cost-Effectiveness of Pre-Exposure Prophylaxis (PrEP) and Its Impact on HIV-1 Transmission in South Africa

Carel Pretorius1*, John Stover1, Lori Bollinger1, Nicolas Bacaër2, Brian Williams3

November 2010 | Volume 5 | Issue 11 | e13646
Cost-effectiveness of PrEP in young South African women

• Walensky (2012) modeled individual-level impact of 39% efficacy vaginal gel based on CAPRISA results, annual PrEP cost $188, lifetime perspective
• Cost-effectiveness is <1 x South Africa GDP at 2.2% annual incidence age 25 and younger
• May be cost saving if targeted to higher risk women and higher efficacy or lower cost
• Results less sensitive to resistance, toxicity
Cumulative cost in young South African women (US$ per 1,000 women enrolled)
Impact of ART expansion in South Africa on cost-effectiveness of PrEP in young women

- Pretorius (2010) extended a previous model of transmission impact of expanded ART coverage in South Africa to examine PrEP
- Results point to interaction between PrEP and ART coverage
 - At current ART coverage, synergies occur with PrEP
 - PrEP becomes less cost-effective with expanded ART coverage, but impact occurs only when coverage is 3x level in 2010
 - PrEP retains impact longer when targeted to higher risk women
Issues identified across studies

• Implementation impact on efficacy and cost
 – Adherence: medication adherence and wastage, monitoring adherence, duration of PrEP
 – Coverage of target group vs. those at low risk
• Interaction between PrEP and TasP
 – Individual-level: testing and entry into care
 – Transmission: impact of TasP on probability of transmission without PrEP
Priorities for future studies

• Evaluating new PrEP modalities, integrating cost-effectiveness studies into clinical trials

• Evaluating “real world” implementation
 – Uptake in high risk groups
 – Adherence and duration on PrEP
 – Access barriers and insurance coverage
 – Budget impact

• Modeling cost-effectiveness of combination interventions, including PrEP and TasP
Acknowledgements

• Ashley Eggman, MS, Weill Cornell
• Roy M. Gulick, MD, MPH, Weill Cornell
• A. David Palitiel, PhD, Yale
• Rochelle Walensky, MD, MPH, Harvard