Hepatotoxicity of Antiretroviral Therapy

Martin Fisher
Brighton and Sussex University Hospitals
Brighton UK
Outline

• Background
• Methodological issues in defining hepatotoxicity
• Summary of pathogenic mechanisms
• Summary of conventional ART
• Newer ART agents and available data
• Approach to patient management
Background

• Antiretroviral therapy has dramatically reduced HIV associated morbidity and mortality
 – Opportunity to reduce onward HIV transmission
 – Guidelines recommending earlier initiation

• Toxicity has emerged as one of the leading causes of HIV related morbidity, mortality and treatment discontinuation
 – Toxicity the major reason for hospital admission\(^1\)
 – Hepatotoxicity the most frequent (30\%)\(^1\)
 – Hepatotoxicity historically 3\(^{rd}\) most common reason for ART toxicity related discontinuation\(^2\)

• High rates of HBV and HCV co-infection likely to increase risk of hepatotoxicity

Nunez et al, AIDS Res Hum Retroviruses 2006; Fisher unpublished
Difficulties in defining hepatotoxicity

• Clinical endpoints rarely used
 – cf cardiovascular end-points
• Definition of laboratory abnormalities vary from study to study
 – Usually ACTG criteria, but
 – May be modified according to baseline values if elevated
 – Definitions of Upper Limit of Normal vary between labs
• Definitions of HBV and HCV co-infection vary from study to study
 – HBV: sAg positive or eAg positive
 – HCV: antibody positive or RNA detected
• Incidence versus prevalence
Defining Hepatotoxicity

ALT or AST

ULN

Grade 4 toxicity

Grade 3 toxicity

Grade 1 or 2 toxicity

Normal

ULN → 1

ULN →

‘Severe hepatotoxicity’
Defining Hepatotoxicity

ALT or AST

ULN

ULN → 1

0

10

5

‘Severe hepatotoxicity’
Defining Hepatotoxicity

ALT or AST

ULN

‘Severe hepatotoxicity’
RCT evidence of hepatotoxicity

- Randomisation allows comparison between arms; differences due to chance
- Detailed data on adverse events
- Regular and pre-specified monitoring
- Short duration of follow-up
- Clinical trial patients not always representative
- Co-infected patients or patients with higher baseline LFTs or at higher risk often excluded

Incidence rates likely to be underestimated
Observational data of hepatotoxicity

- More representative of patient population
- Longer-term follow-up
- No exclusion of “higher risk” patients

- Reasons for treatment allocation unknown (possibility of confounding bias)
- Differential follow-up and monitoring patterns
- Complexity of previous treatments difficult to capture
- Possibility of recall bias in retrospective studies
- Wide variation in rates of co-infection between cohorts

- Incidence rates may be overestimated
• ULN of AST varies 35–57; ALT 31-40
 – Grade AST 4 therefore varies >350 to >570 and ALT 310-400

• Co-infection rates in cohorts vary from 4% to 13% (HBV) and 8% to 52% (HCV)

• Incidence/prevalence rates of hepatotoxicity vary from 1% to 29%

• If define hepatotoxicity by 2x abnormal ALT/AST decreases incidence by 50%

After Smith and Sabin, Antiviral Therapy 2004; Sabin JID 2004; Bansi, JAIDS 2009
Attributing cause for abnormal LFTs

Opportunistic diseases

Hepatitis virus Co-infection

Immune reconstitution

Other co-morbidities

Other treatment

HIV treatment
? Drug X
? Drug Y
? Drug Z

Fatty Liver Disease

Alcohol Recreational Drugs
Mechanisms of drug-related liver injury in HIV-infected patients

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic host-mediated (intrinsic and idiosyncratic)</td>
<td>NNRTIs and PIs
Usually 2-12 months after initiation
Occurrence can vary by agent
Dose-dependence for intrinsic damage</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>NVP>ABC>fosAPV
Early, usually within 8 weeks
Often associated with rash
HLA-linked</td>
</tr>
<tr>
<td>Mitochondrial toxicity</td>
<td>NRTIs
ddI>d4T>AZT>ABC=TDF=FTC/3TC</td>
</tr>
<tr>
<td>Immune reconstitution</td>
<td>Chronic Hepatitis B
Within first month
More common if low CD4 count/large rise</td>
</tr>
</tbody>
</table>

Soriano et al. AIDS 2008; 22: 1-13
Associated Risk factors for hepatotoxicity of ART

- Hepatitis B and C co-infection
 - Genotype 3?
- Higher baseline ALT/AST levels
- Alcohol
- Older age
- Female gender
- High or low CD4 count
- Lower BMI
- Use of ddI, d4T, NVP, RTV (>200)

Nucleoside RTIs (NRTIs)

• Inhibition of mitochondrial DNA
 – “d” drugs: ddl > d4T = ddC > ABC = TDF = 3TC = FTC
 – Rarely lactic acidosis syndrome
 – Weeks to months

• Abacavir hypersensitivity
 – B*5701 highly predictive
 – Days to 3 weeks

• Non-cirrhotic portal hypertension
 – ddl
 – Months to years
Non Cirrhotic Portal Hypertension

- Almost exclusively associated with ddl
 - Related to duration of use
 - May present many years after discontinuation
- Histologically:
 - Nodular regenerative hyperplasia
 - Portal veinopathy
 - May be normal
- Clinically: Portal hypertension
 - Variceal bleeding (Scourfield et al, IJSA 2011)
 - Ascites

- ? Reversibility with withdrawal of ddl
- May need shunting or transplant
- ? Role of screening for ddl exposed patients ?fibroscan
Non-nucleoside RTIs (NNRTIs)

• Acute Hypersensitivity reaction
 – Nevirapine > others
 – Associated with higher CD4, female gender
 – Days to weeks

• Chronic Hepatotoxicity
 – ? All NNRTIs
 – ? Association with HCV infection
 – ? Long-term risk or not
Protease Inhibitors (PIs)

- Hyperbilirubinaemia
 - Indinavir and Atazanavir
 - “Gilberts’” like syndrome: benign?
 - Association with Ca breast
- Direct hepatotoxic effect
 - Level related; higher levels with co-infection
- Indirect metabolic effect
 - Insulin resistance; Hyperlipidaemia

- Similar rates of raised ALT/AST with conventional PIs (SQV, LPV, ATAZ)\(^1\)
 - Lower rates with DRV than r/LPV in Artemis\(^2\)

\(^1\) Cooper, Curr Opin HIV AIDS 2007; \(^2\) Mills et al, AIDS 2009
Hepatic safety profile of ARVs

Rilpivirine

- Naïve patients (ECHO and THRIVE)
 - RPV vs Efavirenz
 - HBV 4% and HCV 5% co-infected
 - G3/4 ALT 2% v 3%: AST 2% v 2%
 - In HCV co-infected: similar rates of d/c 6% v 9% (10x)

- Experienced patients (SPIRIT)
 - RPV vs r/PI
 - no significant difference in LFTs

Cohen et al Lancet 2011; Palella et al, IAS 2013
Etravirine

• Naïve patients (SENSE)
 – ETV vs efavirenz
 – No reported differences in LFTs (CNS study)

• Experienced patients (DUET)
 – ETV vs OBR
 – Co-infection rate unpublished
 – AST G3/4 3.9% v 2.5%
 – ALT G3/4 4.4% v 2.3% (ns)

Rockstroh et al, IAS 2011; Mills et al, IAS 2009
Raltegravir

• Naïve patients (STARTMRK)
 – Vs efavirenz
 – G3/4 LFTs 2% vs 2%

• Experienced patients (SWITCHMRK)
 – Vs stable regimen
 – G3/4 LFTs 4% vs 2%

• Experienced patients (BENCHMRK)
 – Vs OBR
 – G3/4 ALT 3 v 3.7%; AST 2.8 v 3.7%

• Well tolerated if HBV/HCV co-infected (1.3% G3/4)

Maraviroc

- Naïve Patients (MERIT)
 - MVC vs efavirenz
 - HBV and HCV co-infection rates not stated
 - G3/4 AEs 3.1% vs 3.7%

- Experienced Patients (MOTIVATE)
 - MVC (bd vs od) vs “OBR”
 - G3/4 AEs (3-4%) similar for MVC od, bd, PBO
 - 6/34 (18%) v 1/19 (5%) with HCV had G3/4 transaminase elevations

- Maraviroc studies in patients with HCV co-infection to slow disease progression

- (Aplaviroc discontinued due to hepatotoxicity)

Cooper et al, JID 2010; van Lelyveld, ExRevAntilInfecTher 2012; Wasmurth, Ex Opin Drug Saf 2012
Cobicistat

• Naïve patients (Study 105)
 – TVD + Atazanavir with COBI or RTV (Blinded)
 – HBV and HCV co-infection excluded
 – Grade 3/4 hyperbilirubinaemia 63%v45% (ns)
 – Transaminase results not reported, but no overall difference in d/c due to AEs

• Naïve patients (Study 114)
 – TVD + Atazanavir with COBI or RTV (Blinded)
 – HBV 5% and HCV 6% co-infected
 – higher rates of hyperbilirubinaemia with COBI
 – G3/4 ALT or AST 3% vs 2%

Elion et al; AIDS 2011; Gallant et al; IAS 2012
Elvitegravir ("Stribild")

• Naïve patients (Study 102 and 103)
 – Versus efavirenz or r/Atazanavir
 – 1% HBV and 5% HCV co-infected
 – 2.3% G3/4 AST v 5% v 6%
 – 1.4% G3/4 ALT vs 4% v 3%

• Experienced patients (Study 145)
 – Versus raltegravir
 – 5% HBV and 13% HCV co-infected
 – More G3 ALT (5%v2%) and AST (5%v1%) with raltegravir
 – Liver AEs leading to d/c: 1.7%v0.8%

Zolopa et al, CROI 2013; Molina et al; LancetID, 2012
Elvitegravir and Cobicistat in hepatic impairment

- 20 subject volunteer study
 - 10 healthy volunteers
 - 10 hepatic impairment (CPT scores 709)
- 10 day dosing; 21 day follow-up
- No Grade 3 or 4 Adverse Events
- No Grade 3 or 4 transaminase elevations
 - 1 G2 hyperbilirubinaemia

Ramanathan et al; IWCPH, Barcelona 2012
Dolutegravir

• Naïve patients (SPRING 1)
 – Dolutegravir vs efavirenz
 – 9% HCV coinfected
 – Liver AEs: G3/4 0.6% (DTG) and 2% (EFV)

• Naïve patients (SPRING 2)
 – Dolutegravir vs raltegravir
 – 2% HBV and 10% HCV co-infected
 – Liver AEs: G3 2% each arm; G4 1%
 • D/C with DTG: 2 acute HCV, 2HBV IRIS, 1 con-med, 1 drug-induced

• Naïve patients (SINGLE)
 – Dolutegravir vs efavirenz
 – 7% HCV at baseline; HBV and “impairment” excluded
 – No G3/4 LFT abnormalities; G2 1 vs 4%

Van Lunzen, Lancet 2011; Raffie et al, Lancet 2013; Walmsley et al, IAS 2012
Dolutegravir

• Experienced patients (VIKING)
 – No comparator (od vs bd)
 – 4% HBV and 16% HCV co-infected
 – No G3/4 transaminase abnormalities

• Experienced patients (SAILING)
 – Dolutegravir vs raltegravir
 – HBV/HCV coinfected: 14% vs 18%
 – G3/4 ALT: 3% vs 2%
 – “high rate of IRIS with HBV/HCV; more with DTG”

Eron et al; JID 2012; Pozniak et al, CROI 2013
Hepatic safety profile of ARVs

Hepatic safety profile of ARVs

Starting ART

• Benefits >> Risk

• Be aware of patient status
 – HBV/HCV status
 – Baseline LFTs
 – Other co-morbidities
 – Other concomitant medications

• Caution with patients at higher risk for hepatotoxicity
 – shouldn’t alter decision on when to start

See Cooper, Curr Opin HIV AIDS 2007
Monitoring ART

BHIVA Monitoring Guidelines:
• Full baseline LFTs
• Repeat transaminases after 1 and 3 months
• Then 3-6 monthly once established on ART

• If commencing nevirapine:
 • Weekly for first 2 months

• Consider closer monitoring if HBV or HCV co-infected
• ?role for therapeutic drug monitoring if hepatic damage

Asboe et al, HIV Medicine 2011
Managing abnormal LFTs

• Repeat specimen to confirm

• Include alkaline phosphatase, gamma GT, albumin and INR to help determine aetiology

• Check for other co-infections: acute HCV, syphilis

• Check for other medications (including unprescribed)

Asboe et al, HIV Medicine 2011; Walker Curr Opin HIV AIDS 2007
‘Hy’s Law’

- 10–50% patients with **hepatocellular** jaundice will have fatal liver failure\(^1\)

- ↑ ALT or total bilirubin are relatively common
 - BUT **combination** is rare in drug development

- FDA: Combination of ‘ALT >3x ULN and total bilirubin >1.5x ULN’ as an indicator of clinical concern\(^2\)

- Clinical relevance validated: 12.7% prevalence of mortality/liver transplantation in subjects with hepatocellular jaundice\(^3\)

Median AST in patients with LEE

Median AST (IQR)

- continued HAART
- modified HAART
- upper limit normal

Weeks since start LEE

den Brinker, AIDS 2000
When to stop ARVs for hepatotoxicity?

• Symptomatic hepatitis
• Jaundice
• Lactic acidosis
• Hypersensitivity
• ALT or AST >10xULN
• Newly-marketed drugs

SMART study: stopping NNRTIs

Fox et al. AIDS 2008; 22(17): 2279-89
DART Study: Adverse events

Proportion event-free

Years from randomisation (ART initiation)

SAE $p=0.20$
ART-modifying AE $p=0.85$
Grade 4 AE $p=0.18$
Grade 3/4 AE $p=0.52$

LCM
CDM
Mean absolute ALT (U/l) from LCM/CDM randomisation

Global P=0.83 overall
(65028 measurements)

Global P=0.14 estimating individual comparisons at each timepoint
Toxicity in ALT from randomisation

Global P=0.53 estimating individual comparisons at each timepoint

Weeks (where >150 at risk)
Impact of ART on Overall Liver Mortality in HIV/HCV Co-infected Patients

- Bonn cohort (1990–2002)
 - 285 HIV/HCV co-infected patients
- Liver-related mortality rates per 100 person-years
 - HAART: 0.45
 - ART: 0.69
 - No therapy: 1.70
- Predictors for liver-related mortality
 - No HAART
 - Low CD4 cell count
 - Increasing age

Hepatic safety profile of ARVs recommended by DHHS, EACS, BHIVA
Summary

- Difficulties in analysing studies to determine frequency of hepatotoxicity
- Hepatotoxicity described with all antiretroviral agents
- Less hepatotoxicity with newer recommended ART options
 - ? Hepatotoxicity may become less of an isse
- Caution with those “at risk”
- Evaluate for non-ART causes of abnormal liver function
- Benefits of ART significantly outweigh the risks
Acknowledgements

• DART Study Team
 Sarah Walker
• BSUH
 Duncan Churchill
• RFH
 Sanjay Bhagani
• UCL
 Caroline Sabin
• Hamburg
 Jan Van Lunzen

• Gilead
 Terry Whitehead
• Viiv
 Andy Benzie
• AbbVie
 Pat Dore
• BMS
 Izabela Tolowinska
• Janssen
 Rebecca Wroe
• Merck
 Harpal Lamba