

CENTER FOR GLOBAL HEALTH

Adherence Monitoring -State of the Science and Future Innovations

Jessica Haberer, MD, MS June 9, 2014

Conflicts of Interest

- I am/have been a paid consultant for the International AIDS Vaccine Initiative, the World Health Organization, and FHI 360
- I receive funding from NIMH, NIAID, and the Gates Foundation
- I partner with several technology companies, but receive no financial support from them

Outline

- Commonly used adherence monitoring measures
- Innovations in adherence monitoring
- Recommendations of what to use when and why

Self-reported adherence

- Standard assessment in clinical practice, trials, studies
- Formats
 - Doses missed or taken
 - Interruptions (e.g., consecutive doses missed)
 - Percent/visual analog scale

0%	50%	100%
No medicine	Half the medicine	All the medicine

- Rating scales (poor, fair, good, etc)
- Frequency (rarely, sometimes, often, always, etc)
- Recall periods typically 3, 7, or 30-days
- Interview in person or by phone, computer assisted (ACASI)

Memory and adherence

- We tend to remember specific events for a few days (e.g., breakfast)
- Beyond that, we remember patterns (Wilson, Cur HIV/AIDS Rep, 2009)
- Goal with self-report is to "pull people off the ceiling"

Self-reported adherence

Pros	Cons
 Easy to collect Inexpensive Compatible with pill boxes 	 Inaccuracy due to social desirability bias Infrequent data collection may lead to recall bias Differential response bias common
	 Difficult to get natterns

Pill counts

- Mode of collection
 - Announced at clinic, pharmacy, or study visits
 - Unannounced
 - Home (Bangsberg, AIDS, 2000)
 - Phone (Kalichman, HIV Clin Trials, 2008)
- Percent adherence = <u>pills dispensed pill count</u>

Clinic-based pill counts

Pros	Cons
 Relatively easy to collect Inexpensive Compatible with pill boxes 	 Inaccuracy due to social desirability bias (pill dumping) No patterns Potential for Hawthorne effect

Unannounced pill counts

Pros	Cons
 More likely to be truly objective Compatible with pill boxes 	 May be logistically challenging and resource intensive No patterns

Pharmacy refill

Percent adherence (medication possession ratio) =

days (months) drug dispensed

days (months) between the first and last dispensing

• Better predictor of viral suppression than CD4 count (Bisson, PLoS Med, 2008)

Pharmacy refill

Pros	Cons		
 Relatively inexpensive Potentially feasible in 	 Can be difficult to implement 		
resource-limited settings	 Only assesses maximal predicted adherence 		
Compatible with pill boxes			

Medication Event Monitoring System (MEMS)

- Used in >200 studies for >25 years
- Date-and-time stamp for each opening/closure

Data downloaded via USB cable

Electronic monitoring

Pros

Cons

- Likely most objective measure of behavior
- Provides patterns of adherence
- Curiosity openings and pocket doses
- Requires adherence to the adherence measurement
- Potential for Hawthorne effect
- Expensive
- Not compatible with pill boxes

Drug levels

- May be performed in
 - Plasma
 - Peripheral blood mononuclear cells (PBMC)
 - Red blood cells (RBC)
 - [Hair]
- Provide periodic, summary measures of varying time periods

Drug levels

Pros

Cons

- Objective
- Distinguish adherers from non-adherers (Donnell, JAIDS, 2014)
- Potential for Hawthorne effect
- Expensive
- Require specialized lab capacity
- Subject to biological and behavioral variation
- Blunt measure (Liechty, AIDS, 2004)

HIV/RNA

Pros	Cons
 Objective Indicate adequate adherence 	 Expensive Typically done infrequently Does not reveal adherence challenges that may ultimately lead to viral failure

Cell phones

Cell phones are nearly ubiquitous

Lake Victoria

3G+ internet, voice and SMS
Edge internet, voice and SMS

Rwanda

Tanzania

Cell phones

Pros	Cons		
 SMS and IVR 	 "Can you hear me now?" 		
 Convenient 	 Variable understanding of 		
 Frequent data 	expected responses		
collection	 Literacy 		
 Relative anonymity 	 Shared phones 		

- Low battery, powered off
- Participant availability
- Cost

Feasibility

• Study of weekly IVR/SMS queries of missed doses of ART among in southwestern Uganda

(Haberer, AIDS Behav, 2010)

More on feasibility

- 75% of US participants (N=44) retained in a 90-day daily IVR survey of sexual behavior; 97% of surveys completed (Schroeder, Curr HIV/AIDS Rep, 2009)
- Mean 50% weekly IVR reports completed by US substance users (N=50) (*Tucker, AIDS Patient Care STDS, 2013*)
- Response rates for daily SMS on PrEP adherence/sex
 - 74% for couples in Uganda (*Kibengo, PLoS One, 2013*)
 - 23% for MSM and FSW in Kenya (Mutua, PLoS One, 2012)

Getting easier

- Successful responses
 - Weekly queries of missed doses among adults and children in southwestern Uganda (Haberer, AIDS, 2013)
 - ~85% by SMS
 - ~70% by IVR
 - Periodic daily queries of PrEP adherence and sexual behavior in Uganda and Kenya
 - ~75% by SMS (*Haberer, poster #316*)
- Differences: just-in-time training, accounting for anticipated problems and difference in phones

Wireless electronic adherence monitors

Real-time data

Validity

• Wisepill and IVR/SMS-report in southwestern Uganda

Loss of viral suppression was associated with wireless EAM (p=0.02), but not IVR/SMS-report (p=0.54)

Acceptability and the Hawthorne effect

- Wisepill currently involved in 25+ studies
- Wisepill acceptability varies by setting
 - High in Uganda (Haberer, AIDS Behavior, 2010) and South Africa/Wisebag for gel applicators (van der Straten, AIDS Behav, 2013)
 - Mixed in China/concern for unintended disclosure (Bachman, AIDS Res Treat, 2013; Sabin Abstract #369)
- Greater adherence with Med Signals compared to control (p<0.001); (Ryder, Am Geriatr Soc Mtg, 2008)

- 447 individuals on ART in southwestern Uganda (*R01MH098744; PI: Bangsberg*)
- Routine HIV RNA every 4 months
- Adherence lapses >48 hours investigated
- HIV RNA determined during the adherence lapse

	Univariable	Multivariable
	OR (p)	OR (p)
Duration of lapse (days)	1.27 (p=0.004)	1.27 (p=0.025)
Duration of viral suppression (years)	0.71 (p=0.071)	0.53 (p=0.007)
30 day adherence (10% increments)	0.75 (p=0.035)	0.81 (p=0.19)
Baseline viral load (at ART start) /1000	0.99 (p=0.55)	
Regimen - NVP	(ref)	(ref)
EFV	0.20 (p=0.020)	0.06 (p<0.001)

(Haberer, CROI 2013)

Everything with MEMS plus

Pros		Сс	ns
•	Capacity for real-time	•	Cost
	data/intervention	•	Increased data
•	Reduced data loss		management
		•	Cellular reception
		•	Batteries, SIM cards
		•	Potential for unintended
			disclosure
		٠	Hawthorne effect may be
			high

Ingestion event monitors

Edible tracers

- Helius
- Intellicap
- MagneTrace
- Helius (Proteus Digital Health)

- Sensitivity 97%, specificity 98% compared to DOT (Au-Yeung, Wireless Health, 2010)
- Feasible for 4-weeks of monitoring in 28 US individuals with mental health disorders (*Kane, J Clin Pschy, 2013*)
- Accurate/feasible for TB treatment in US (N=30) (Belknap, PLoS One, 2013)
- Also monitors heart rate, temperature, activity

Taggants

- Drugs marked with an inert detectable taggant
- Adherence measured through breath test

- Xhale
 - Reminders sent to breathe into the device
 - Taggant recorded and transferred via
 USB for adherence management
- Ester taggants for vaginal gel use shown to be feasible among 8 US women (Morey, J Clin Pharm, 2013)

Metabolite detectors

- Adhere.IO (a.k.a. XoutTB)
- "Behavioral diagnostic"
- Urine metabolite
- Text in unique code with incentive for response
- Evaluated in Pakistan

Ingestion event monitors

•	Pros	•	Cons
•	Objective	•	Requires ad
	documentation of		adherence i
	ingestion	•	May be disc

- **Detect** adherence patterns
- Real-time data •

- herence to an monitor
- concerting ethically
- Logistics of repackaging or • use of 2nd pills
- Limited publications •

Google Glass?

Will we be able to watch people taking their medication every day?

Drug levels in hair

Photo courtesy of M. Gandhi

- Surpassed any other predictor of virologic outcomes in WIHS; Hair ATV in the highest quintile had OR 59.8 (*Gandhi, Clin Infect Dis, 2011*)
- Phase 1 PK study showed 76% increase in hair level per 2-fold dose increase in frequency of dosing (*Liu*, *PLoS One*, 2014)
- Acceptability largely high, although challenges seen with some populations (Olds, submitted; Hickey JAIDS 2014)

Drug levels in hair

•	Pros	•	Cons
•	Simple to collect	•	Cost of processing
•	Store at room	•	No patterns
	temperature	•	Metabolism may be
•	Process in central lab		variable
•	Summary measure of	٠	Potential challenges
	adherence over time		with sample collection

Ethics of novel adherence monitoring strategies

- Privacy
- Confidentiality
- Autonomy
- Dependence
- Ancillary care obligations

R21AI108329 (PI: Haberer, Eyal)

Recommendations

- Choice of measure depends on resources and goals (Williams, AIDS Behav, 2012)
 - Easy of use
 Capacity
 - -Expense Goals of measurement
- Self-report is too unreliable to be your only measure
- Drug levels or HIV RNA do not provide enough information about behavior to be your only measure

Recommendations

- Use multiple measures, including 1+ objective measures
- "I have no money, but really want to know about adherence..."
 - Pharmacy refill, if closed system
 - -Consider reprioritizing funds
 - Consider objective measures in at least a subset

Recommendations

- Real-time monitoring makes sense when you need data in real-time
- Ingestion event monitors aren't ready for prime time, but may be a viable tool in the future

Acknowledgments

- Mentors: David Bangsberg, Seth Kalichman, Ira Wilson, Steve Safren, Claude Mellins, Norma Ware, John Guttag, Ken Freedberg
- Wisepill Technologies, Yo! Voice Solutions, Dimagi, mSurvey
- R21MH083306, K23MH087228, R21AI108329, R01MH098744, Gates Foundation
- Study staff and participants