

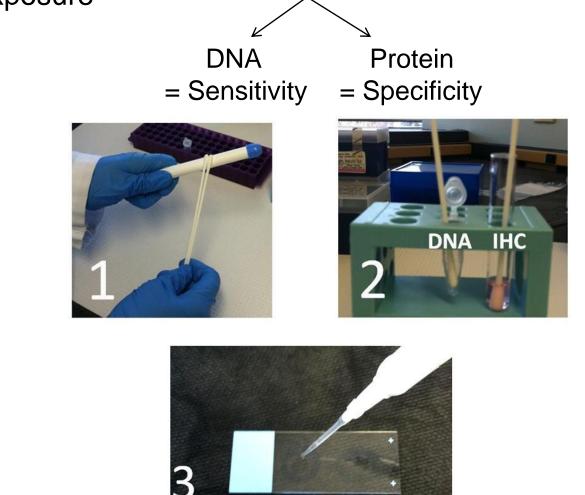
DNA and Protein Biomarkers Offer Increased Accuracy for Assessing Vaginal Microbicide Gel Adherence (Abstract 275)

Annie Thurman MD Terry Jacot PhD Gustavo Doncel, MD PhD

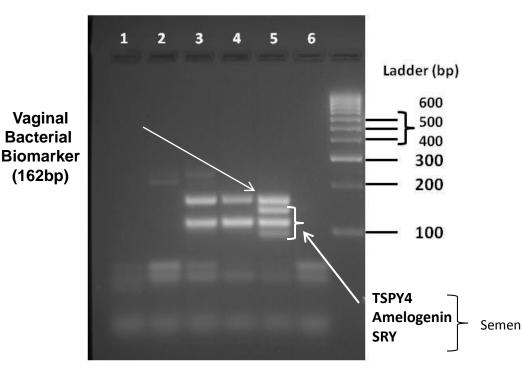
Background/Rationale

- Currently, there are no reliable, highly sensitive, objective adherence markers for microbicide trials
- Direct relationship between adherence and product effectiveness

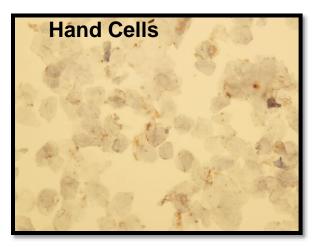
CAPRISA 004	# HIV	Ν	HIV incidence		Effect
		(%)	TFV	Placebo	
High adherers (>80% gel adherence)	36	336 (38)	4.2	9.3	54%
Intermediate adherers (50-80% adherence)	20	181 (20)	6.3	10.0	38%
Low adherers (<50% gel adherence)	41	367 (42)	6.2	8.6	28%


Current Adherence Measures

- Self Report subjective, biased
 - Examples: FemPrep, VOICE (MTN-003) trials
- Visual Inspection of Returned Applicators (VIRA)
 - Reported sensitivity of 76% (62% 84%)
 - Cannot determine incorrect use, wiping
- Ultraviolet Light (UVL) Assessment
 - Reported sensitivity of 84% (range 79 87%)
 - Cannot distinguish semen exposure independently
- Dye Stain Assay (DSA)
 - $-\downarrow$ Sensitivity with HTI applicators
- Electronic Event (WiseBag)
 - Daily versus Peri-Coital dosing
- Pharmacokinetic Samples
 - Expensive, Invasive
 - Unable to detect placebo


Preliminary Data

Determine objective, biological biomarkers which can be used as a composite to measure vaginal insertion of gel applicators and semen exposure



DNA and Protein Biomarkers

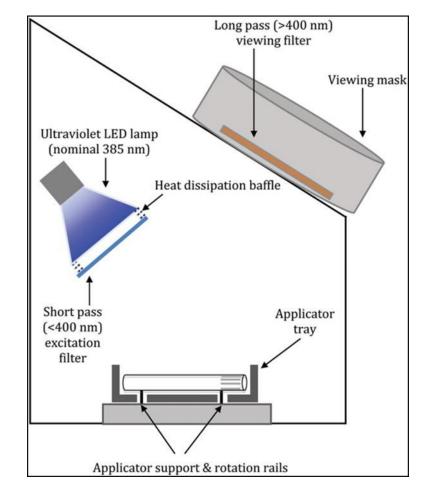
- Lane 1: Un-inserted (control) applicator
- Lane 2: Sham applicator (no amelogenin)
- Lane 3: Inserted applicator
- Lane 4: Vaginal Swab
- Lane 5: Inserted applicator + semen exposure
- Lane 6: No DNA negative control

Objectives

- CONRAD D13-125 Study
- Primary Objective: Validate DNA and protein biomarkers of vaginal insertion versus sham use in a clinical study of observed applicator use
 - Study design included field conditions of wiping applicators, correct/incorrect use, sham insertion
 - Compare DNA/Protein biomarkers to VIRA, UVL
- Secondary Objective: Validate objective measures of semen exposure (TSPY4, SRY) versus participant report of unprotected intercourse

Methods

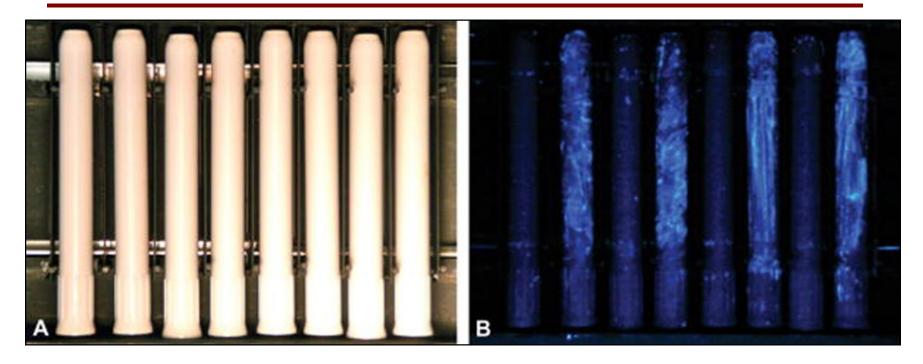
- Approved by the Chesapeake IRB (Pro00008154)
- Registered with ClinicalTrials.gov (NCT01804023)
- Cross-sectional study of 40 healthy, non-pregnant, HIV negative women aged 18 – 50 years-old
- At least 3 days from their last menstrual bleeding episode
- No vaginal creams or gels in the past 3 days
- Single screening/enrollment visit.
 - HIV, Pregnancy
 - Medical History


D13-125 Study Design

- Participants (n = 40) provided, under observation:
 - 1 Vaginal Swab (Positive Control)
 - 4 Sham applicators (Specificity)
 - 8 Vaginally inserted applicators (Sensitivity)
 - "Incorrect use" vaginally inserted, gel not expelled
 - "Correct use" inserted and gel expelled
 - Wiped
- Applicators graded "Inserted" vs "Not Inserted"
 - 3 Blinded Readers \rightarrow VIRA and UVL
 - Blinded Laboratory Staff → DNA/Protein Analysis
- Applicators (n = 240) evaluated within 7d of use
- Applicators (n = 240) evaluated at 30+ days of use

Applicator	Applicator # Condition		Time until processing		
				~7 days	~30 days
1		SHAM, VIRA and UVL		n = 40	
2		SHAM, VIRA and UVL			n = 40
3		SHAM, DNA/Cytokeratin		n = 40	
4		SHAM, DNA/Cytokeratin			n = 40
5		INCORRECT USE, VIRA and UVL		n = 40	
6		INCORRECT USE, VIRA and UVL			n = 40
7		INCORRECT USE, DNA/Cytokeratin	CORRECT USE, DNA/Cytokeratin		
8		INCORRECT USE, DNA/Cytokeratin	ORRECT USE, DNA/Cytokeratin		n = 40
9		CORRECT USE VIRA, UVL, DNA/Cytok	RRECT USE VIRA, UVL, DNA/Cytokeratin		n = 20
10		CORRECT USE VIRA, UVL, DNA/Cytok	DRRECT USE VIRA, UVL, DNA/Cytokeratin		n = 20
11		WIPED VIRA/UVL, DNA/Cytokeratin	O VIRA/UVL, DNA/Cytokeratin		
12		/IPED VIRA/UVL, DNA/Cytokeratin			n = 40
Total Number Evaluated by VIRA and UVL			n = 160	n = 160	
Total Number Evaluated by DNA/Cytokeratin Biomarkers			n = 160	n = 160	
Total Number Evaluated by either methodn				n = 240	n = 240

Methods



Evaluation of Microbicide Gel Adherence Monitoring Methods. Moench, Thomas; OHanlon, Deirdre; Cone, Richard

Sexually Transmitted Diseases. 39(5):335-340, May 2012. DOI: 10.1097/OLQ.0b013e31824790bb

Methods

Evaluation of Microbicide Gel Adherence Monitoring Methods.

Moench, Thomas; OHanlon, Deirdre; Cone, Richard

Sexually Transmitted Diseases. 39(5):335-340, May 2012. DOI: 10.1097/OLQ.0b013e31824790bb

VIRA and UVL are Subjective Learning Curve and Significant Inter-Reader Variability

Variable	Mean %, (Inter Reader Variability p value)						
	VIRA 7d	VIRA 30d	р	UVL 7d	UVL 30d	р	
Sensitivity							
All Inserted	54	52	0.50	74	92	< 0.01	
Apps							
	(IRV p = 0.36)	(IRV p = 0.03)		(IRV p = < 0.01)	(IRV p = 0.07)		
With prior gel	70	68	0.84	93	100	0.06	
					$(\mathbf{D}\rangle) = (10)$		
	(IRV p = 0.39)	(IRV p = 0.94)		(IRV p = 0.85)	(IRV p = 1.0)		
Wiped	24	28	0.46	38	84	< 0.01	
	(IRV p = 0.84)	(IRV p = 0.13)		(IRV p = < 0.01)	(IRV p = 0.17)		
Specificity							
All Sham	49	78	< 0.01	73	66	0.21	
	(IRV p = 0.65)	(IRV p = 0.71)		(IRV p = < 0.01)	(IRV p = < 0.01)		

Leaders in Reproductive Health and HIV Prevention

DNA/Protein Biomarkers Maintain Robust, Identical Sensitivity and Specificity

Variable	7 Days	30 Days	
Sensitivity (%)			
All Inserted Apps	98.3	98.3	
No prior gel	100	100	
With prior gel	100	100	
Wiped	95	95	
Specificity (%)			
All Sham	100	100	
	Data expressed as % CONRAD		

Leaders in Reproductive Health and HIV Prevention

Study Results:

DNA/Protein Biomarkers Increased Sensitivity/Specificity at 30d

Variable	VIRA or UVL	DNA/Protein	p value			
VIRA - 30 DAYS						
Sensitivity All Applicators	187/360 (51.9%)	117/119 (98.3%)	<0.0001			
Sensitivity Wiped	34/120 (28.3%)	37/39 (95%)	<0.0001			
Specificity (Sham)	94/120 (78.3%)	40/40 (100%)	0.0013			
UVL Light - 30 Days						
Sensitivity All Applicators	332/360 (92.2%)	117/119 (98.3%)	0.02			
UV Specificity (Sham)	79/120 (65.8%)	40/40 (100%)	<0.0001			

Semen/Sperm Biomarkers

TSPY4 and SRY

- Jacot TA et al. *Contraception.* 2013;88(3):387-395.

- 37 Vaginal Swabs
 - -24 reported semen exposure in past 7d
 - 15 reported no condom use
 - 11/15 (73% sensitivity) with + vaginal swab.
 - No semen detected from swabs of negative reports (100% specificity)
- Vaginal Applicators
 - Feasibility demonstrated

Residual Tenofovir Detection from Applicators

Quantification of Residual Tenofovir (TFV) on Gel Applicators

		Vaginally Inserted			Controls (n=2)	
	1	2	3	4	Sham ¹	Blank ²
TFV (ng)	1120	1250	659	577	BLD ³	BLD
Storage (days)	32	55	33	13	-	-

Manually handled, gel expelled in trash

² Unopened applicator, removed from foil packet only

³BLD = Below Level of Detection

Conclusions

- VIRA and UVL are inexpensive, feasible
 - Ultimately subjective with significant IRV
 - Wiping applicators VIRA sensitivity 28%
- DNA and Protein Biomarkers
 - Significantly higher sensitivity, specificity
 - Reproducible w/ storage, presence of gel
- Semen Biomarkers
 - Can be assayed from vaginal swabs and returned used applicators
- Active Drug/Placebo
 - Can be assayed from returned used applicators
 - High throughput methods under development

Expected Outcomes

- A non-invasive, inexpensive, highly sensitive and specific triple adherence marker panel
 - Detect active drug or placebo use
 - Sensitive despite prolonged storage and shipping in extreme conditions
 - Inform ongoing and future HIV prevention trials
 - Correlate drug or placebo delivery with HIV or pregnancy risk exposure (semen)
- Future applications of adherence panel
 - Applicable to topical vaginal and rectal formulations; potential for other dosage forms
 - Objectively investigate acceptability and use of drug delivery systems

Acknowledgements

- USAID and PEPFAR (APS #OAA-13-00005)
- Nancy Gonyea, Suzanne Jackson MS, Bela Oza MS
- Reprotect (Thomas Moench MD)
- CAPRISA 008 (Leila Mansoor PhD)
- Ashley Nelson (CONRAD Microbicide Development Lab)
- CONRAD Clinical Team
 - Jill Schwartz MD, Thomas Kimble MD, Christine Mauck MD, Kim Linton MPH
- D13-125 Participants
- Angela Kashuba PharmD, Univ of North Carolina

Thank you

