Predictive Analytics for Retention in HIV Care

Jessica Ridgway, MD, MS; Arthi Ramachandran, PhD; Hannes Koenig, MS; Avishek Kumar, PhD; Joseph Walsh, PhD; Christina Sung; Rayid Ghani, MS; John A. Schneider, MD, MPH
Big Data/Predictive Analytics

Google

Amazon

Netflix
Predictive Analytics in Healthcare

• Big Data source: Electronic medical records (EMR)
Predictive Analytics in Healthcare:
Examples of Predicted Outcomes

- In-hospital cardiac arrest
- Readmissions
- Hospital acquired infections
- Length of stay in hospital
- Missed clinic appointments
How can predictive analytics be used to improve retention in HIV care?

- Predict each client’s risk for retention in care failure before client falls out of care
- Real time, individualized assessment of risk
- Can be used to target retention resources for clients at greatest risk of falling out of care
Aim

To create a predictive model of retention in care using EMR data and electronic contextual metadata, utilizing machine learning methods
What is Machine Learning?

- Derived from computer science
- Uses historical information to identify patterns or predict future events without necessarily having pre-programmed rules
- Captures hard to detect relationships in the data
 - Scalable
 - Non linear/complex models
- Goal to maximize predictive accuracy rather than interpret regression coefficients
What is Machine Learning?

Most Common Machine Learning Tasks...

Regression
Using trends to predict outcomes

Clustering
Finding existing groups or categories

Classification
Labeling and sorting into groups

Dimension Reduction
Create a simplified abstraction of the data
Data Source

EMR data for all HIV+ patients who received care in adult ID clinic from 2008-2016:

- Appointments scheduled/attended/missed/cancelled
 - Encounters in ID and other departments
- Diagnoses
 - billing codes, problem lists, past medical history
- Social history
- Laboratory values
 - CD4, viral load
- Medications
 - ART regimen, pill burden
- Demographics, Insurance
Location Based Data: Geocoded Patient Addresses

Abbreviations: UCMC, University of Chicago Medical Center; CTA, Chicago Transit Authority
Location Based Data

- Data from American Community Survey and Chicago Open Data Portal
- Characteristics of clients’ neighborhoods
 - Average income level
 - Average education level
 - Racial/ethnic composition
 - Crime rates
Retention in Care Definition:
2 kept visits within 12 months > 90 days apart
Methods

• Machine Learning Methods used
 – Decision trees
 – Random forest
 – Logistic regression
 – Gradient boosting

• Validated using temporal cross-validation
Methods

• Compared precision of each model to baseline retention rate and to a simple logistic regression model meant to simulate expert heuristics
Results: Patient Demographics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=713</td>
</tr>
<tr>
<td>Male sex</td>
<td>399 (56%)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>585 (82%)</td>
</tr>
<tr>
<td>White</td>
<td>93 (13%)</td>
</tr>
<tr>
<td>Other</td>
<td>35 (5%)</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>312 (44%)</td>
</tr>
<tr>
<td>Medicaid</td>
<td>309 (43%)</td>
</tr>
<tr>
<td>Medicare</td>
<td>85 (12%)</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>47.3 (13.6)</td>
</tr>
<tr>
<td># of attended appointments</td>
<td>19.5 (17)</td>
</tr>
</tbody>
</table>
Appointments per year in HIV care clinic
Comparison of Precision among Models

![Graph showing comparison of precision among models over years](image-url)
Best Performing Model: Random Forest Model

- Included 1,466 features

- Most important features for prediction of retention in care:
 - Previous ID encounters
 - CD4 count
 - Provider
 - Viral load
 - Substance use
 - Previous encounters in departments other than ID
Precision and Recall for Random Forest Model
Future Plans

• Incorporate natural language processing of text of provider and social work notes into the model
• Validate model using EMR data from CFAR Network of Integrated Systems (CNICS) research network
• Create interactive tool showing risk of retention failure in real time during clinical encounter
Acknowledgments

Funding provided by pilot award from the Third Coast Center for AIDS Research (CFAR), an NIH funded center (P30 AI117943).