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Big Data/Predictive Analytics
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Predictive Analytics in Healthcare

» Big Data source: Electronic medical records
EMR
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Predictive Analytics in Healthcare:
Examples of Predicted Outcomes

* In-hospital cardiac arrest
 Readmissions

* Hospital acquired infections
* Length of stay in hospital
Missed clinic appointments
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How can predictive analytics be used to improve
retention in HIV care?

 Predict each client’s risk for retention in care
fallure before client falls out of care

 Real time, individualized assessment of risk

« Can be used to target retention resources for
clients at greatest risk of falling out of care
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Alm

To create a predictive model of retention in care
using EMR data and electronic contextual metadata,
utilizing machine learning methods
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What i1s Machine Learning?

* Derived from computer science

« Uses historical information to identify patterns or
predict future events without necessarily having
pre-programmed rules

« Captures hard to detect relationships in the data
— Scalable
— Non linear/complex models

» Goal to maximize predictive accuracy rather than
Interpret regression coefficients
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What is Machine Learning?

Most Common Machine Learning Tasks...
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Data Source

EMR data for all HIV+ patients who received care In
adult ID clinic from 2008-2016:

— Appointments scheduled/attended/missed/cancelled
* Encounters in ID and other departments

— Diagnoses
 billing codes, problem lists, past medical history

— Social history

— Laboratory values
 CD4, viral load

— Medications
e ART regimen, pill burden

— Demographics, Insurance
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Location Based Data: Geocoded Patient Addresses

Density of Patients Coming Average Patient Travel Time
to UCMC Clinic to UCMC via CTA

Average Patient Travel Time Average Crime Rate Along CTA
to UCMC via Vehicle Travel Route to UCMC
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Abbreviations: UCMC, University of Chicago Medical Center; CTA, Chicago Transit Authority



|_ocation Based Data

« Data from American Community Survey and
Chicago Open Data Portal

» Characteristics of clients’ neighborhoods
— Average income level
— Average education level
— Racial/ethnic composition
— Crime rates
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Methods

Retention in Care Definition:
2 kept visits within 12 months > 90 days apart



Methods

 Machine Learning Methods used
— Decision trees
— Random forest
— Logistic regression
— Gradient boosting

» Validated using temporal cross-validation
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Methods

« Compared precision of each model to baseline
retention rate and to a simple logistic regression
model meant to simulate expert heuristics
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Results: Patient Demographics

Characteristics N (%)
N=713

Male sex 399 (56%)
Race
African American 585 (82%)
White 93 (13%)
Other 35 (5%)
Insurance
Private 312 (44%)
Medicaid 309 (43%)
Medicare 85 (12%)
Mean (SD)
Age 47.3 (13.6)

# of attended appointments 19.5 (17)
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Appointments per year in HIV care clinic
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Comparison of Precision among Models

Precision at 10% for Current Model and at Baseline
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Best Performing Model: Random Forest Model

 |ncluded 1,466 features

* Most important features for prediction of retention
In care:
— Previous ID encounters
— CD4 count
— Provider
— Viral load
— Substance use
— Previous encounters in departments other than ID
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Precision and Recall for Random Forest Model
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Future Plans

* |ncorporate natural language processing of text of
provider and social work notes into the model

« Validate model using EMR data from CFAR
Network of Integrated Systems (CNICS)
research network

* Create Interactive tool showing risk of retention
failure in real time during clinical encounter
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