

ADHERENCE TRAJECTORIES AMONG AFRICAN AMERICANS LIVING WITH HIV

Laura M. Bogart,¹ Glenn J. Wagner,¹ Bonnie Ghosh-Dastidar,¹ David J. Klein,¹
Matt G. Mutchler,^{2,3} & Bryce McDavitt^{2,4}

¹RAND Corporation; ²AIDS Project Los Angeles; ³California State University-Dominguez Hills; ⁴University of Southern California ₁

Background: HIV Disparities

- African Americans living with HIV show lower antiretroviral treatment (ART) adherence than do Whites living with HIV, contributing to disparities in viral suppression and survival
- Culturally relevant factors, psychosocial factors, and structural factors have been associated with nonadherence among African Americans in prior research
 - Cultural factors: stigma, medical mistrust (due to experienced and historical discrimination)
 - Psychosocial factors: mental health (depression), substance use
 - Structural factors: poverty

The Present Study

- Research has not fully examined how cultural, psychosocial and structural factors together may contribute to different trajectories of non-adherence over time
- Glass et al. (2009) Swiss Cohort Study: four trajectories of selfreported adherence (good, worsening, improving, poor)
 - Worse adherence: younger age, basic education, changed living conditions, started IDU, increased alcohol use, depression, longer time with HIV, lipodystrophy, and changing care provider
 - Improved adherence: simplified regimen, changed ART class, less time on ART, starting comedication (for opportunistic infections, CVD, HCV, cancer)

The Present Study #ADHERENCE2017

- To understand potential reasons for disparities, we explored whether there were distinct adherence trajectories (or, patterns) among African Americans living with HIV,
- To explore whether these different trajectories had distinct cultural, psychosocial and structural correlates

Methods: Participants

- Combination of two longitudinal (6-month) datasets of HIV-positive African American adults recruited in community settings in Los Angles, CA (8/10-3/15)
 - Project Mednet: 246 participants
 - Longitudinal study of social networks
 - Project Rise: 108 participants
 - Control group from adherence intervention study
- Duplicate participants (n = 33) omitted from Rise
- Participants missing electronic adherence data at any timepoint omitted (n = 82)
- Final n = 239

Methods: Measures

- Electronically monitored adherence with the Medication Event Monitoring System (MEMS)
 - Mednet: 2, 4, and 6 months post-baseline
 - Rise: 1.5, 4.5, and 6 months post-baseline
 - Calculated past 2-week adherence (% of doses taken) at each time-point
 - Adjustment for use of cap (e.g., pocketed doses)

Methods: Measures

- Baseline audio computer-assisted selfinterviews:
 - Cultural/Psychosocial:
 - Internalized stigma, medical mistrust, perceived ART efficacy, healthcare satisfaction rating, depression severity, problem alcohol use, stimulant substance use, sex while high
 - Structural/Socio-demographic/Medical
 - Age, sexual orientation, time since diagnosis, prior incarceration (past 3 months), income, stable housing

Methods: #ADHERENCE201 Group-based Trajectory Analysis

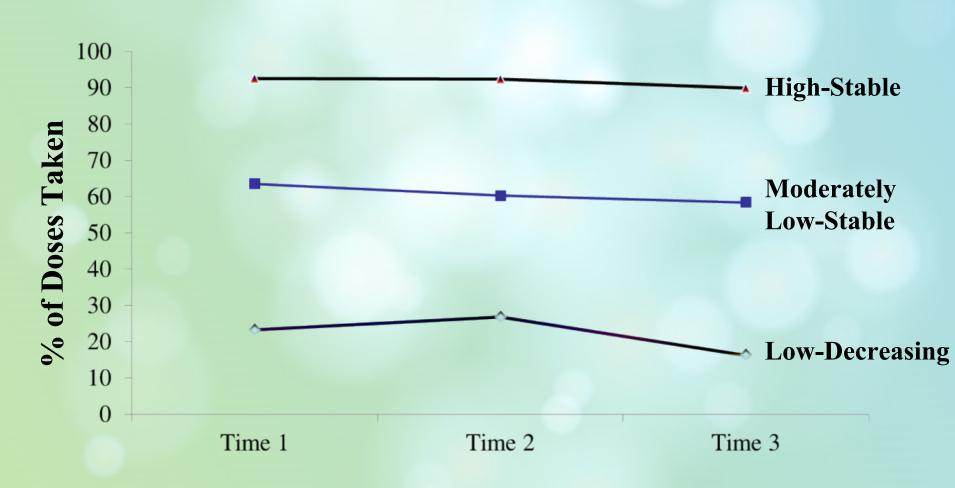
- Proc Traj (a SAS procedure developed at Carnegie Mellon) was used to identify clusters of individuals with similar progressions of adherence over time
 - Developmental trajectories estimated from longitudinal data based on a semiparametric, group-based modeling strategy, and then membership probabilities estimated in each group for every participant

Methods: #ADHERENCE201 Regression Analysis

- Bivariate and multivariate multinomial regression models predicted trajectory membership with cultural, psychosocial, structural, socio-demographic, and medical factors
 - Comparisons between pairs of trajectories for each predictor
- Final multivariate model: stepwise procedures

Results: Participants

	M (SD) or %
Age (years)	47.7 (10.0)
Female	25.1%
MSM	65.3%
Low Income (<\$10,000 annually)	66.1%
Stable Housing	74.1%
Time since diagnosis (years)	14.4 (8.0)
Incarceration (last 3 mos.)	7.6%


Results: #ADHERENCE201 Group-Based Trajectory Analysis

The analysis yielded three groups:

		Adherence (% of doses taken)		
	N	Time 1 M (SD)	Time 2 M (SD)	Time 3 M (SD)
Low- Decreasing	61	23.2 (23.8)	26.8 (26.4)	16.3 (20.5)
Moderately Low-Stable	83	63.5 (24.8)	60.2 (24.7)	58.4 (23.9)
High-Stable	95	92.6 (9.9)	92.4 (10.4)	89.9 (13.7)

Adherence Trajectories

Bivariate Results

Variable	Low vs. High OR (95% CI)	Middle vs. High OR (95% CI)	Low vs. Middle OR (95% CI)
Structural/Socio	-Demographic		
Age	0.95 (0.92 – 0.98)**	0.98 (0.95 – 1.01)	0.97 (0.94 – 1.00)+
Recent Jail	2.72 (0.85 – 8.74)+	1.13 (0.32 – 4.05)	2.40 (0.74 – 7.80)
Psychosocial/Cultural			
Stimulant Use	1.87 (0.82 – 4.24)	2.44 (1.16 – 5.13)*	0.77 (0.36 – 1.63)
Sex while high	2.80 (1.18 – 6.63)*	2.80 (1.26 – 6.24)*	1.00 (0.46 – 2.15)
Med mistrust (race)	1.17 (0.71 – 1.92)	1.56 (0.98 – 2.48)+	0.75 (0.45 – 1.25)
ART efficacy	0.65 (0.36 – 1.17)	0.54 (0.32 – 0.92)*	1.20 (0.69 – 2.09)

0.76(0.63 - 0.92)**

Care rating

0.90(0.73 - 1.12)

1.19(0.99 - 1.44) +

#ADHERENCE201

Final Multivariate Model

Variable	Low vs. High OR (95% CI)	Middle vs. High OR (95% CI)	Low vs. Middle OR (95% CI)
Structural/Socio-De	mographic		
Age	0.95 (0.92 – 0.98)**	0.98 (0.95 – 1.01)	0.97 (0.94 – 1.00)+
Psychosocial/Cultur	al		
Stimulant Use	1.82 (0.79 – 4.22)	2.57 (1.20 – 5.49)*	0.71 (0.33 – 1.54)
ART efficacy	0.60 (0.33 – 1.10)	0.55 (0.32 – 0.96)*	1.09 (0.61 – 1.94)
Care rating	0.94 (0.76 – 1.17)	0.77 (0.64 – 0.93)**	1.22 (1.00 – 1.49)*

Note: Model controlled for dataset used

+p<.10; *p<.05; **p<.01

Summary

- Older participants were more likely to be in the moderately low or high adherence group
- Participants with lower perceived ART efficacy, who rated their healthcare as worse, and who used stimulant drugs, were more likely to be in the moderately low (vs. high) adherence group
- Participants with higher healthcare ratings were more likely to be in the low (vs. middle) group

Limitations

- Small sample size for trajectory analysis
- Data points combined over two different studies and 5 years (although methods and research staff were consistent)
- Trajectories were generally flat, so analysis may not add insights above prior research using simpler regression models to predict continuous adherence outcomes

Discussion

- Psychosocial and culturally relevant factors including substance use and medical mistrust were associated with moderately low adherence trajectories, above effects of structural/socio-demographic factors
 - Unknown why few predictors were associated with very low adherence trajectory
 - Possible power issue or unmeasured structural variables (e.g., neighborhood factors) that are high barriers to access to care
- Future work could involve replication with a larger sample size, as well as additional predictors or domains

Acknowledgments

- Community Partners
 - Brian Risley, Kieta Mutepfa
 - APLA Treatment Education Community Advisory Board
- Project Staff
 - Sean Lawrence, Nikki Rachal, Kelsey Nogg
- Funding
 - R01MD003964 , R01 MD006058, R01 NR017334, P30MH058107