145 - Does an adherence-enhancing program increase retention in care in the Swiss HIV Cohort?

Susan Kamal¹,², Tracy R. Glass³,⁴, Alexandra Calmy⁵, Marthe Than Lecompte⁵, Olivier Bugnon¹,², Jean-Jacques Parienti⁶, Matthias Cavassini⁷*, Marie P. Schneider¹,²*

1Community pharmacy, School of pharmaceutical sciences, University of Geneva, University of Lausanne, Switzerland
2Community pharmacy, Department of ambulatory care & community medicine, University of Lausanne, Switzerland
3Biostatistics unit, Swiss Tropical and Public Health Institute, Basel, Switzerland
4University of Basel, Basel, Switzerland
5HIV Unit, Department of internal medicine, Geneva University Hospital, Geneva, Switzerland.
6CHU Caen, France
7Infectious Disease Service, Lausanne university hospital, University of Lausanne, Switzerland

* Equal senior contributors
Disclosures of presenter: No conflicts of interest to declare.
Outline

• Background
• Aim
• Methods (Setting, Intervention, Participants, Design, Inclusion Criteria, Outcomes and Data Analysis)
• Results
• Strengths & Limitations
• Conclusions
Background

HIV CARE CONTINUUM:

THE SERIES OF STEPS A PERSON WITH HIV TAKES FROM INITIAL DIAGNOSIS THROUGH THEIR SUCCESSFUL TREATMENT WITH HIV MEDICATION

DIAGNOSED WITH HIV
ENGAGED OR RETAINED IN CARE
LINKED TO CARE
PRESCRIBED ANTIRETROVIRAL THERAPY
ACHEIVED VIRAL SUPPRESSION

Source: Aids.gov
Background

- Scalable interventions are needed to achieve low HIV infectiousness by improving HIV treatment adherence and retention in care.
- In Gardner’s cascade, adherence to cART is the last step in the cascade to ensure retention and engagement in care.

Aim

• This study tested a theory-based medication adherence enhancing intervention to increase HIV treatment engagement and retention in care.
Methods
How do we work in the HIV tertiary clinic in Lausanne?
Intervention
Medication Adherence program in Lausanne

Motivational interviewing patient-pharmacist (MI)
- Face-to-face
- Patient-centered
- Directive & goal-oriented
- Short but repeated

Medication Event Monitoring System (MEMS®)
- Objective and dynamic measure of daily medication intake

Medication adherence report
- Data collection and secure record
- Feedback to the patient/physician
- Continuity of care
Participants

• Part of the SHCS.
• Comparative populations in Geneva and Lausanne.
• Medical visits at least every 6 months combined with a laboratory visit.
• Laboratory visits are scheduled with nurses, and often precede medical visits.
• Reminders sent to those who miss their medical appointments (1 letter).

Design and Inclusion Criteria

• We retrospectively compared two French speaking centers participating in the SHCS between 2004-2012.
• IG and CG included all patients attending the Lausanne and Geneva centers for > 6 months.
• All patients in the Lausanne center were included in the IG.
Outcomes and Data Analysis

- Primary and secondary outcomes were defined as a >6-month (LTFU6) and >12-month (LTFU12) gaps of care (LTFU) intervals without any registered medical laboratory visit.
- The incidence of medical visit gaps, length of the gaps and time till the first gap in care were also calculated.
- Inverse-probability and treatment weights (IPTW) were used to adjust for the differences in the patient populations at the two centers.
Results
Table 1: Baseline characteristics*

<table>
<thead>
<tr>
<th></th>
<th>Intervention n=451</th>
<th>Standard of Care n=311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n (%)</td>
<td>281(63.31)</td>
<td>194 (62.38)</td>
</tr>
<tr>
<td>Age, median (IQR)</td>
<td>37(30,45)</td>
<td>35(30,45)</td>
</tr>
<tr>
<td>Non-White, n (%)</td>
<td>184(40.80)</td>
<td>165(53.05)</td>
</tr>
<tr>
<td>Higher education, n (%)</td>
<td>125(27.72)</td>
<td>150(48.23)</td>
</tr>
<tr>
<td>Mode of transmission, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>141(31.26)</td>
<td>81(26.05)</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>244(54.10)</td>
<td>190(61.09)</td>
</tr>
<tr>
<td>IVDU</td>
<td>42(9.31)</td>
<td>19(6.11)</td>
</tr>
<tr>
<td>CD4 cells, median (IQR)</td>
<td>246(127,329)</td>
<td>367(212,483)</td>
</tr>
<tr>
<td>Prior ART treatment, n (%)</td>
<td>174(38.58)</td>
<td>215(69.13)</td>
</tr>
<tr>
<td>Time since HIV infection (years), median (IQR)</td>
<td>0.4(0,3)</td>
<td>0.2(0,0.6)</td>
</tr>
<tr>
<td>Used MEMS, n (%)</td>
<td>180(39.91)</td>
<td>0(0)</td>
</tr>
<tr>
<td>ART class, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNRTI</td>
<td>237 (52.55)</td>
<td>181(58.20)</td>
</tr>
<tr>
<td>PI</td>
<td>121 (26.83)</td>
<td>77 (24.76)</td>
</tr>
<tr>
<td>Boosted PI</td>
<td>69 (15.30)</td>
<td>30 (9.65)</td>
</tr>
</tbody>
</table>

* Baseline is the first follow-up visit closest to the date of starting ART
Table 2: Effect of the intervention on 6-month treatment gaps using IPTW to adjust for different patient populations at the two centers

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>OR (95% CI)</th>
<th>p</th>
<th>HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>759</td>
<td>0.45 (0.33 – 0.62)</td>
<td><0.001</td>
<td>0.62 (0.52 – 0.75)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for covariates</td>
<td>634</td>
<td>0.41 (0.27 – 0.64)</td>
<td><0.001</td>
<td>0.59 (0.48 – 0.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>IPTW weighted model</td>
<td>634</td>
<td>0.43 (0.28 – 0.65)</td>
<td><0.001</td>
<td>0.67 (0.53 – 0.86)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Covariates adjusted for: age, gender, ethnicity, citizenship, education, income source, risk group for HIV infection, depression, psychiatric problems, smoking, living alone, hepatitis B, hepatitis C, CD4 at cART start, AIDS, prior treatment with cART, cART class, and years living with HIV.
• The IG included 451 patients, CG 311. In the IG, 180 (40%) took part in the medication adherence program for a median of 109 weeks (IQR: 39-189).

• LTFU6 was significantly more likely to happen in the CG vs. IG (74.6% vs. 56.9%, p<0.001).

• LTFU12 could be evaluated in 709 (93%) patients and was significantly more likely to occur in the CG compared the IG (22.6% vs. 12.5%, p<0.001).
• The median time until the first treatment gap was significantly longer in the IG VS CG (120 vs 84 weeks, p<0.001).
• The incidence of visit gaps was significantly reduced in those who participated in the medication adherence program (n=180) vs. who did not in Lausanne (n=268) (44.4% vs. 65.3%, p<0.001).
Strengths & Limitations

Strength:
- This study is the first to show the positive impact of a theory-based inter-professional medication adherence intervention on retention in care.

Limitations:
- Due to a lack of randomization, advanced statistical approaches were used to adjust for differences in patient characteristics to attempt to balance the two centers as in a controlled trial.
- The IG had more reminders by the pharmacy, and 1 letter + 2 phone calls in case they missed their pharmacy visit.
- We did not compare adherence or clinical outcomes between 2 centers (future work).
- We did not do a cost effective analysis (future work).
Conclusions

• This study showed the effectiveness of a theory-based adherence enhancing intervention to reduce loss to follow up among HIV+ adults.

• The intervention significantly reduced LTFU at 6 and 12 months.
We would like to thank:
• The patients.
• Partners, collaborators and funders.
References

• Bangsberg DR. Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. ClinInfectDis. 2006;43(7):939-41.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>HR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>759</td>
<td>0.45 (0.33 – 0.62)</td>
<td><0.001</td>
<td>0.62 (0.52 – 0.75)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for covariates</td>
<td>634</td>
<td>0.41 (0.27 – 0.64)</td>
<td><0.001</td>
<td>0.59 (0.48 – 0.73)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for propensity score</td>
<td>634</td>
<td>0.51 (0.34 – 0.76)</td>
<td>0.001</td>
<td>0.62 (0.50 – 0.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for propensity score + covariates</td>
<td>634</td>
<td>0.45 (0.29 – 0.69)</td>
<td><0.001</td>
<td>0.61 (0.49 – 0.76)</td>
<td><0.001</td>
</tr>
<tr>
<td>IPTW weighted model</td>
<td>634</td>
<td>0.43 (0.28 – 0.65)</td>
<td><0.001</td>
<td>0.67 (0.53 – 0.86)</td>
<td>0.001</td>
</tr>
<tr>
<td>SMR weighted model</td>
<td>709</td>
<td>0.35 (0.21 – 0.56)</td>
<td>0.01</td>
<td>0.67 (0.51 – 0.88)</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Extra

- The average propensity score for those in the intervention was 0.68 (sd 0.19) compared to 0.46 (sd 0.22) for those in the standard of care. The average IPTW weights for those in the intervention was 1.67 (sd 0.78) compared to 2.47 (sd 2.04) for those in the standard of care. All models produced similar results and there was a clear effect of the intervention on treatment gaps >6 months.
Adherence in IG (2008-2016), n=524
• The percentage of patients with visit gaps was compared using chi-square test. The median length of the gap and the median time until the first gap in care were compared using Wilcoxon rank sum test.
• The incidence of 12-month visit gaps was reduced in those who participated in the medication adherence program vs. those who did not (10.2% vs. 13.8%, p=0.29) however the difference was not significant.
• Of these, 16.6% had a gap of care of 12 months or more after a median of 91 weeks of treatment (IQR: 47-193) with a length of the gap lasting a median of 72 weeks (IQR: 58-108) instead of the planned 52 week-interval between 2 lab tests.
• More than half of the patients (64.2%) had a gap of care of 6 months or more after a median of 106 weeks of treatment (IQR: 55-175) and lasting a median of 30 weeks (IQR: 27-38) instead of the planned 24 week-interval between 2 lab tests. My comment on the April 4 version has not been addressed: