

Conflict of Interest Disclosure

Cathy M. Puskas, PhD Candidate

Has no real or apparent conflicts of interest to report.

SFU SIMON FRASER UNIVERSITY ENGAGING THE WORLD

Socio-structural and Psychosocial Factors Associated with Antiretroviral Therapy Adherence by Gender in British Columbia, Canada

CM Puskas^{1,2}, C Wang², A Kaida¹, CL Miller¹, JSG Montaner^{2,3}, RS Hogg^{1,2}

¹ Simon Fraser University, Burnaby, Canada

- ² BC Centre for Excellence in HIV/AIDS, Vancouver, Canada
- ³ University of British Columbia, Vancouver, Canada

IMON FRASER UNIVERSI ENGAGING THE WORLD

Background

- Optimal adherence to ART yields:
 - Better health outcomes^{1,2}
 - Lower viral load, individually and in the community³
- Fewer women are able to attain or maintain optimal adherence relative to men^{4,5,6}
- If we are to attain 90-90-90, gender-based disparity in adherence must be addressed

Proportion of Men and Women Attaining Optimal Adherence by IDU Status in BC, Canada

SFL

Objectives

- To identify socio-structural and psychosocial variables associated with optimal (≥95%) specific to men and women
 - To examine the role of internalized stigma on ART adherence in relation to other factors known to affect adherence (age, ethnicity, IDU)^{7,8}

Study Population

- Longitudinal Investigation into Supportive and Ancillary Services (LISA) cohort⁹
 - Targeted sampling to include harder to reach populations
- Aged 19 years or older
- Data collection: Interviewer-administered questionnaires
 - July 2007 and January 2010
- Clinical Data: linked through provincial Drug Treatment Plan
- Exclusion Criteria:
 - Self-identifying as transgender
 - Pregnancy at the time of interview or having a full term pregnancy 6 months prior to the interview

Primary Outcome

- Optimal ART adherence: ≥95% adherence based on pharmacy refill compliance¹⁰
- Assessed for 1-year period prior to interview

Psychosocial Measurement Scales

- Modified Berger Stigma Scale:^{8,11}
 - 1) Internalized stigma or negative self image
 - 2) Disclosure worries
 - 3) Public attitudes
 - 4) Personalized or experienced stigma
- Treatment adherence self-efficacy expectation¹²
- Depressive Symptoms: 10-item Centre for Epidemiological Studies Depression Scale (CES-D)¹³

Statistics

- Pearson's Chi-squared tests: differences in the proportion and characteristics of men and women attaining optimal adherence
- Backward stepwise logistic regression (confounding): characteristics independently associated with optimal adherence

Description of Study Population

- 753 individuals; 199 (26%) women, 554 (74%) men
- Relative to men, women were more likely to:
 - Experience greater sociostructural adversity or poverty
 - Experience greater psychosocial adversity, particularly depression and HIV-related stigma

Sociostructural Characteristics

(n=753; women=199, men=554)

	Women: n (%) or median (IQR)		Men: n (%) or median (IQR)	p-value
≥95% ART adherence		78 (39.2%)	352 (63.5%)	<0.001
Age		42 (36 to 46)	47 (42 to 53)	<0.001
Indigenous ethnicity		91 (45.7%)	130 (23.5%)	<0.001
Unstable housing		80 (40.2%)	168 (30.4%)	0.012
Incomplete high school education		111 (55.8%)	195 (35.3%)	<0.001
History of incarceration		109 (55.3%)	283 (51.2%)	0.316
Food insecurity		155 (78.2%)	339 (61.3%)	<0.001
History of IDU		154 (78.2%)	304 (55.0%)	<0.001
Current IDU		50 (25.4%)	121 (21.9%)	0.315
No use of medication support in the past 3 months		96 (48.2%)	309 (55.9%)	0.064

Psychosocial Characteristics

(n=753; women=199, men=554)

	Women: n (%) or median (IQR)		Men: n (%) or median (IQR)	p-value
History of mental health disorder		153 (76.9%)	320 (57.9%)	<0.001
Stigma score (full)		31 (25 to 36)	27 (22 to 33)	<0.001
Stigma score components				
Personalized		10 (6 to 12)	8 (6 to 12)	0.002
Disclosure-related		8 (5 to 8)	6 (4 to 8)	0.006
Negative self-image		7 (6 to 10)	6 (5 to 8)	<0.001
Public attitude-related		7 (5 to 8)	6 (4 to 8)	<0.001
High depressive symptoms (CES-D)		142 (71.4%)	287 (52.0%)	<0.001
Adherence efficacy expectation	9	2 (79 to 100)	96 (83 to 100)	0.380

Women: Bivariate Analysis of Adherence

(n=199; ≥95% adherence=78, <95% adherence=121)

	≥95% Adherence (n=78): n (%)	<95% Adherence (n=121): n (%)	p-value
	or median (IQR)	or median (IQR)	
Age	44 (40 to 50)	40 (34 to 45)	<0.001
Indigenous ethnicity	29 (37.2%)	62 (51.2%)	0.052
Unstable housing	29 (37.2%)	51 (42.1%)	0.485
Incomplete high school education	34 (43.6%)	77 (63.6%)	0.005
Food insecurity	53 (67.9%)	102 (85.0%)	0.004
History of IDU	52 (67.5%)	102 (85.0%)	0.004
History of mental health disorder	57 (73.1%)	96 (79.3%)	0.306
Stigma score (full)	31 (26 to 35)	30 (25 to 36)	0.983
Depressive symptoms	53 (67.9%)	89 (73.6%)	0.393
Adherence efficacy expectation	96 (79 to 100)	92 (79 to 100)	0.124

Women: Multivariate Model of Adherence

(n=199; ≥95% adherence=78, <95% adherence=121)

	Unadjusted Odds Ratio (95% CI)	p-value	Adjusted Odds Ratio (95% CI)	p-value
Age (per 1 year increase)	1.083 (1.04 to 1.128)	<0.001		
Indigenous ethnicity	0.574 (0.32 to 1.031)	0.063		
Incomplete high school education	0.424 (0.236 to 0.763)	0.004		
Food insecurity	0.371 (0.186 to 0.741)	0.005	0.364 (0.181 to 0.734)	0.005
History of IDU	0.371 (0.186 to 0.741)	0.005		
Negative self-image (per unit increase)	0.995 (0.908 to 1.091)	0.921	1.016 (0.924 to 1.117)	0.747

Gender Differences Associated with Optimal ART Adherence

- A significantly lower proportion of women achieved optimal ART adherence
 - 39.2% versus 63.5% (p<0.001)
- Bivariate analyses:
 - Women: few variables were significantly associated with optimal adherence
- Multivariate analyses:
 - Women: Food security was the only variable associated with optimal adherence (AOR: 0.36; 95% CI: 0.18 to 0.73)

Limitations

- High levels of disadvantage among women may affect our ability to identify barriers to adherence
- Psychosocial measurements (medication taking self-efficacy)
- Representativeness of LISA cohort:
 - Oversampling of women, Indigenous peoples, and people who inject drugs

Conclusions

- A significantly lower proportion of women were able to attain optimal ART adherence
- Disproportionate poverty and other forms of vulnerability was observed among women
- To reach the goals of 90-90-90 and to better serve women, emphasis should be placed on:
 - Providing more holistic adherence support programs that would reduce poverty and food insecurity
 - Providing better access to women-centered HIV care and support services

References

- 1. Maggiolo, F., et al., Effect of adherence to HAART on virologic outcome and on the selection of resistanceconferring mutations in NNRTI- or PI-treated patients. HIV Clin Trials, 2007. 8(5): p. 282-92.
- 2. Paterson, D.L., et al., Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med, 2000. 133(1): p. 21-30.
- Montaner, J.S., et al., Association of highly active antiretroviral therapy coverage, population viral load, and yearly new HIV diagnoses in British Columbia, Canada: a population-based study. Lancet, 2010. 376(9740): p. 532-9.
- 4. Puskas, C.M., et al., Women and vulnerability to HAART non-adherence: a literature review of treatment adherence by gender from 2000 to 2011. Curr HIV/AIDS Rep, 2011. 8(4): p. 277-87.
- 5. O'Neil, C.R., et al., Factors associated with antiretroviral medication adherence among HIV-positive adults accessing highly active antiretroviral therapy (HAART) in British Columbia, Canada. J Int Assoc Physicians AIDS Care (Chic), 2012. 11(2): p. 134-41.
- 6. Tapp, C., et al., Female gender predicts lower access and adherence to antiretroviral therapy in a setting of free healthcare. BMC Infect Dis, 2011. 11: p. 86.
- 7. Earnshaw, V. A., et al., HIV stigma mechanisms and well-being among PLWH: a test of the HIV stigma framework. AIDS Behav, 2013. 17(5), 1785-1795.
- 8. Berger, B. E., Ferrans, C. E., & Lashley, F. R. Measuring stigma in people with HIV: psychometric assessment of the HIV stigma scale. Res Nurs Health, 2001. 24(6), 518-529.
- 9. Duncan, K. C. et al., Cohort Profile: Longitudinal Investigations into Supportive and Ancillary health services. Int J Epidemiol, 2013. 42(4), 947-955.
- 10. Grossberg, R., Y. Zhang, and R. Gross, A time-to-prescription-refill measure of antiretroviral adherence predicted changes in viral load in HIV. J Clin Epidemiol, 2004. 57(10): p. 1107-10.
- 11. Wright, K., et al., Stigma scale revised: reliability and validity of a brief measure of stigma for HIV+ youth. J Adolesc Health, 2007. 40(1), 96-98.
- 12. Kerr, T., et al., Psychosocial determinants of adherence to highly active antiretroviral therapy among injection drug users in Vancouver, 2004. Antivir Ther, 9(3), 407-414.
- 13. Roberts, R. E. Reliability of the CES-D Scale in different ethnic contexts, 1980. Psychiatry Res, 2(2), 125-134.

SFL

Thank you

Acknowledgements:

International Association of Providers of AIDS Care My committee: C. Miller, R. Hogg, A. Kaida Faculty of Health Sciences, Simon Fraser University BC Centre for Excellence in HIV/AIDS The Drug Treatment Program

The men and women who have given their time, information, and expertise to advance HIV research and care.

ENGAGING THE WORLD

BRITISH COLUMBIA CENTRE for **EXCELLENCE** in HIV/AIDS

