Effectiveness and cost-effectiveness of the adherence improving self-management strategy (AIMS) in HIV care in the Netherlands: a multi-site randomised controlled trial

Marijn de Bruin
Professor of Health Psychology
Institute of Applied Health Sciences
University of Aberdeen

Sr. research fellow Health Communication
Amsterdam School of Communication Research
University of Amsterdam
Background

- Importance adherence known & non-adherence common

- Effect adherence interventions\(^1\)
 - 5/17 low RoB RCTs improved adherence & outcomes
 - Complex interventions and small/medium size effects

- Cost-effectiveness adherence interventions\(^2\)
 - 14 RCTs, narrow perspectives
 - 2 RCTs report ICERS QALY with parameter uncertainty
 - One of these gave some clue to intervention content

- Very little promising evidence on (cost)effectiveness

1- Nieuwlaat, Cochrane 2014, 11:CD00001; 2- Oberje, de Bruin et al, 2013
Objectives (anno 2003)

- Develop an intervention that can be delivered by nurses during routine clinical care

- Intervention content based on:¹,²,³
 - Comprehensive literature review
 - Integration behavior (change) theory
 - Input professionals & patients
 - Use of MEMS-data

- Nurses deliver the intervention after 3-day training

Previous studies of AIMS

- Pilot-study (within-subject)\(^1\)
 - N = 26
 - Feasible, acceptable, effects on adherence

- Single center RCT \(^2\)
 - N = 133
 - Powered on adherence
 - Effects on adherence (taking and timing) & viral load

1- de Bruin, Aids Pat Care STDs, 2005;19:384; 2- de Bruin, Health Psychology, 2010;29:421.
Objectives & Design

- To evaluate the effectiveness and cost-effectiveness of AIMS in a heterogeneous group of clinics and patients
- 7 clinics, 21 nurses trained to deliver the intervention
- Primary outcomes over 3 time points/visits (M5, 10, 15):
 - Viral load, Cost-effectiveness, Cost-utility
- Individual patient randomisation (N = 223)
- Mixed-effects VL analyses, controlling for COVs
- Study protocol \(^1\); RATIONALE Table \(^2\); Clinicaltrials.gov\(^3\)

1- Oberje, de Bruin, BMC HSR, 2013;13:274; de Bruin, Psych & Health, 2015;30:8; ID NCT01429142
Sample & Context

- All naïve patients and ‘at-risk’ treatment-experienced
 - ‘At risk’: Detectable viral load in last 3 year & missed doses during baseline monitoring

- Netherlands:
 - Free health care
 - Infection route sexual; intravenous drug use rare
 - Visit physician and nurse every 5-6 months
 - Caucasian, Caribbean, and SS African patients
 - 90-95% viral suppression at given time point
 - Fairly high-quality adherence support (de Bruin et al., 2009; 2010; Oberje, de Bruin, 2015)
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Intervention group (N = 110)</th>
<th>Control group (N = 113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female, n (%)</td>
<td>14 (12.7%)</td>
<td>22 (19.5%)</td>
</tr>
<tr>
<td>Age, years, mean (SD)</td>
<td>45.4 (11.0)</td>
<td>43.4 (10.8)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>81 (73.6%)</td>
<td>63 (55.8%)</td>
</tr>
<tr>
<td>African</td>
<td>16 (14.5%)</td>
<td>21 (18.6%)</td>
</tr>
<tr>
<td>Caribbean*</td>
<td>7 (6.4%)</td>
<td>19 (16.8%)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (5.5%)</td>
<td>10 (8.8%)</td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>48 (43.6%)</td>
<td>46 (40.7%)</td>
</tr>
<tr>
<td>Medium</td>
<td>40 (36.4%)</td>
<td>39 (34.5%)</td>
</tr>
<tr>
<td>High</td>
<td>22 (20.0%)</td>
<td>28 (24.8%)</td>
</tr>
<tr>
<td>Treatment-experienced</td>
<td>52 (47.3%)</td>
<td>58 (52.7%)</td>
</tr>
<tr>
<td>Treatment-initiating</td>
<td>58 (52.3%)</td>
<td>55 (48.7%)</td>
</tr>
<tr>
<td>CD4+ cell count, cells/mm³, mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment-experienced</td>
<td>519.0 (222.3)</td>
<td>553.6 (233.8)</td>
</tr>
<tr>
<td>Treatment-initiating</td>
<td>379.3 (246.9)</td>
<td>411.8 (204.3)</td>
</tr>
<tr>
<td>Plasma HIV-RNA, mean/log (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment-experienced</td>
<td>1.74 (0.61)</td>
<td>1.83 (0.82)</td>
</tr>
<tr>
<td>Treatment-initiating</td>
<td>4.83 (0.70)</td>
<td>4.30 (1.01)</td>
</tr>
</tbody>
</table>
Results

- 40% consented, no differences Y/N participants
- 5 people died

- 0% missing VL data at baseline and 4% at 3 points
- Health care consumption questionnaires: 25% missing at baseline and follow-up, 50% at intermediate points

- Completeness & fidelity AIMS delivery:
 - 85% of intervention visits attended
 - 60% of intervention elements delivered
 - Moderate quality of delivery of intervention elements
Results: effectiveness

- Primary effects on viral load across 3 time points:
 - Control group had 1.28 [1.04-1.52] times higher log viral load \((F(1, 196) = 6.40, p = .012) \)

- Secondary effects on viral load across 3 time points:
 - Intervention group had 1.89 [0.98-3.65] higher odds of being undetectable \((\chi^2(df = 1) = 3.66, p = .056) \)
 - Control group had 3.08 [1.30-7.88] higher odds of 2 consecutive detectable VLs (17% versus 7%), \((\chi^2(df = 1) = 6.39, p = .012) \)

- Effect sizes similar for ethnic groups & exp/naive pats
Results: cost-effectiveness

- Cost AIMS per patient per year: 83 euros

- Trial-based cost-effectiveness analysis
 - Costs/1 log reduction VL
 - 88% @ €2000, 75% @ €1000, 55% @ €0
 - Costs/1 viral load ‘failure’ avoided
 - 90% @ €8000, 80% @ €4000, 58% @ €0
Results: cost-effectiveness

- Trial-based cost-utility analysis (societal perspective)
 - Costs/QALY full trial period (50% data imputed at intermediate measures): 54% probability CE
 - Bias with 25% imputation acceptable, at 50% high (Gomes, Med Decis Making, 2013;33:1051)
 - QoL baseline & follow-up only (25% data imputed): 80% probability CE
Additional analysis: CD4

Treatment*time interaction (contrary to viral loads), hence per time point analysis

M5: 31.0 [-8.4 to 70.4]
M10: 6.6 [-46.0 to 33.0]
M15: 40.4 [0.1 to 78.7]
Conclusions

- Effects on adherence (pilot and single centre RCT) and on viral load (single and multi-centre RCT) replicated
- Seems to also translate in higher CD4 at follow-up

- Trial-based cost-effectiveness analysis:
 - Viral load: strong but depends on willingness to pay
 - QALY: tricky with missing data, but positive trends

- Trial-based cost-utility: did not expect strong effects
- Markov model almost finished incl. HIV transmission¹
- Available model Goldie ²: High probability CE

Limitations and Recommendations

- Limitations:
 - Delivery AIMS could be better
 - Inclusion rates could be higher
 - Missing data cost-utility for full trial period
 - Trial based CU analysis ignores transmission risk

- Recommendations:
 - Consider adopting AIMS in routine care
 - Need more high-quality, large scale adherence trials evaluating clinical and cost-effectiveness
 - Need more replication of successful interventions rather than testing e.g., 60 different ones in single trials
Acknowledgements

Prof. J.M. Prins
Prof. H.J. Hospers
Prof. GJ van breukelen

Prof. G Kok
Dr. EJM Oberje
Dr. Viechtbauer

Prof. S. Evers

Patients, nurses, and physicians in the Netherlands

ZonMw

Thanks
M.deBruin@abdn.ac.uk